
Chapter 14

Sampling-Based Planning Under
Differential Constraints

After Chapter 13, it seems that differential constraints arise nearly everywhere.
For example, they may arise when wheels roll, aircraft fly, and when the dynamics
of virtually any mechanical system is considered. This makes the basic model used
for motion planning in Part II invalid for many applications because differential
constraints were neglected. Formulation 4.1, for example, was concerned only with
obstacles in the C-space.

This chapter incorporates the differential models of Chapter 13 into sampling-
based motion planning. The detailed modeling (e.g., Lagrangian mechanics) of
Chapter 13 is not important here. This chapter works directly with a given system,
expressed as ẋ = f(x, u). The focus is limited to sampling-based approaches be-
cause very little can be done with combinatorial methods if differential constraints
exist. However, if there are no obstacles, then powerful analytical techniques may
apply. This subject is complementary to motion planning with obstacles and is
the focus of Chapter 15.

Section 14.1 provides basic definitions and concepts for motion planning under
differential constraints. It is particularly important to explain the distinctions
made in literature between nonholonomic planning, kinodynamic planning, and
trajectory planning, all of which are cases of planning under differential constraints.
Another important point is that obstacles may be somewhat more complicated in
phase spaces, which were introduced in Section 13.2. Section 14.2 introduces
sampling over the space of action trajectories, which is an essential part of later
planning algorithms.

Section 14.3 revisits the incremental sampling and searching framework of Sec-
tion 5.4 and extends it to handle differential constraints. This leads to several
sampling-based planning approaches, which are covered in Section 14.4. Familiar
choices such as dynamic programming or the RDTs of Section 5.5 appear once
again. The resulting planning methods can be used for a wide variety of problems
that involve differential constraints on C-spaces or phase spaces.

Section 14.5 briefly covers feedback motion planning under differential con-
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straints. Approximate, optimal plans can be obtained by a simple adaptation
of value iteration from Section 8.5.2. Section 14.6 describes decoupled methods,
which start with a collision-free path that ignores differential constraints, and then
perform refinements to obtain the desired trajectory. Such approaches often lose
completeness and optimality, but they offer substantial computational savings in
many settings. Section 14.7 briefly surveys numerical techniques for optimizing
a trajectory subjected to differential constraints; the techniques can be used to
improve solutions computed by planning algorithms.

14.1 Introduction

14.1.1 Problem Formulation

Motion planning under differential constraints can be considered as a variant of
classical two-point boundary value problems (BVPs) [440]. In that setting, initial
and goal states are given, and the task is to compute a path through a state space
that connects initial and goal states while satisfying differential constraints. Mo-
tion planning involves the additional complication of avoiding obstacles in the state
space. Techniques for solving BVPs are unfortunately not well-suited for motion
planning because they are not designed for handling obstacle regions. For some
methods, adaptation may be possible; however, the obstacle constraints usually
cause these classical methods to become inefficient or incomplete. Throughout
this chapter, the BVP will refer to motion planning with differential constraints
and no obstacles. BVPs that involve more than two points also exist; however,
they are not considered in this book.

It is assumed that the differential constraints are expressed in a state transition
equation, ẋ = f(x, u), on a smooth manifold X, called the state space, which
may be a C-space C or a phase space of a C-space. A solution path will not be
directly expressed as in Part II but is instead derived from an action trajectory
via integration of the state transition equation.

Let the action space U be a bounded subset of Rm. A planning algorithm
computes an action trajectory ũ, which is a function of the form ũ : [0,∞) → U .
The action at a particular time t is expressed as u(t). To be consistent with
standard notation for functions, it seems that this should instead be denoted
as ũ(t). This abuse of notation was intentional, to make the connection to the
discrete-stage case clearer and to distinguish an action, u ∈ U , from an action
trajectory ũ. If the action space is state-dependent, then u(t) must additionally
satisfy u(t) ∈ U(x(t)) ⊆ U . For state-dependent models, this will be assumed by
default. It will also be assumed that a termination action uT is used, which makes
it possible to specify all action trajectories over [0,∞) with the understanding that
at some time tF , the termination action is applied.

The connection between the action and state trajectories needs to be formu-
lated. Starting from some initial state x(0) at time t = 0, a state trajectory is
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derived from an action trajectory ũ as

x(t) = x(0) +

∫ t

0

f(x(t′), u(t′))dt′, (14.1)

which integrates the state transition equation ẋ = f(x, u) from the initial con-
dition x(0). Let x̃(x(0), ũ) denote the state trajectory over all time, obtained by
integrating (14.1). Differentiation of (14.1) leads back to the state transition equa-
tion. Recall from Section 13.1.1 that if u is fixed, then the state transition equation
defines a vector field. The state transition equation is an alternative expression of
(8.14) from Section 8.3, which is the expression for an integral curve of a vector
field. The state trajectory is the integral curve in the present context.

The problem of motion planning under differential constraints can be formu-
lated as an extension of the Piano Mover’s Problem in Formulation 4.1. The main
differences in this extension are 1) the introduction of time, 2) the state or phase
space, and 3) the state transition equation. The resulting formulation follows.

Formulation 14.1 (Motion Planning Under Differential Constraints)

1. A world W , a robot A (or A1, . . ., Am for a linkage), an obstacle region O,
and a configuration space C, which are defined the same as in Formulation
4.1.

2. An unbounded time interval T = [0,∞).

3. A smooth manifold X, called the state space, which may be X = C or it
may be a phase space derived from C if dynamics is considered; see Section
13.2. Let κ : X → C denote a function that returns the configuration q ∈ C
associated with x ∈ X. Hence, q = κ(x).

4. An obstacle region Xobs is defined for the state space. If X = C, then
Xobs = Cobs. For general phase spaces, Xobs is described in detail in Section
14.1.3. The notation Xfree = X\Xobs indicates the states that avoid collision
and satisfy any additional global constraints.

5. For each state x ∈ X, a bounded action space U(x) ⊆ Rm ∪ {uT}, which
includes a termination action uT and m is some fixed integer called the
number of action variables. Let U denote the union of U(x) over all x ∈ X.

6. A system is specified using a state transition equation ẋ = f(x, u), defined
for every x ∈ X and u ∈ U(x). This could arise from any of the differential
models of Chapter 13. If the termination action is applied, it is assumed
that f(x, uT ) = 0 (and no cost accumulates, if a cost functional is used).

7. A state xI ∈ Xfree is designated as the initial state.

8. A set XG ⊂ Xfree is designated as the goal region.
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9. A complete algorithm must compute an action trajectory ũ : T → U , for
which the state trajectory x̃, resulting from (14.1), satisfies: 1) x(0) = xI ,
and 2) there exists some t > 0 for which u(t) = uT and x(t) ∈ XG.

Additional constraints may be placed on ũ, such as continuity or smoothness
over time. At the very least, ũ must be chosen so that the integrand of (14.1) is
integrable over time. Let U denote the set of all permissible action trajectories over
T = [0,∞). By default, U is assumed to include any integrable action trajectory.
If desired, continuity and smoothness conditions can be enforced by introducing
new phase variables. The method of placing integrators in front of action variables,
which was covered in Section 13.2.4, can usually achieve the desired constraints. If
optimizing a criterion is additionally important, then the cost functional given by
(8.39) can be used. The existence of optimal solutions requires that U is a closed
set, in addition to being bounded.

A final time does not need to be stated because of the termination action
uT . As usual, once uT is applied, cost does not accumulate any further and the
state remains fixed. This might seem strange for problems that involve dynamics
because momentum should keep the state in motion. Keep in mind that the
termination action is a trick to make the formulation work correctly. In many
cases, the goal corresponds to a subset of X in which the velocity components
are zero. In this case, there is no momentum and hence no problem. If the goal
region includes states that have nonzero velocity, then it is true that a physical
system may keep moving after uT has been applied; however, the cost functional
will not measure any additional cost. The task is considered to be completed after
uT is applied, and the simulation is essentially halted. If the mechanical system
eventually collides due to momentum, then this is the problem of the user who
specified a goal state that involves momentum.

The overwhelming majority of solution techniques are sampling-based. This
is motivated primarily by the extreme difficultly of planning under differential
constraints. The standard Piano Mover’s Problem from Formulation 4.1 is a special
case of Formulation 14.1 and is already PSPACE-hard [817]. Optimal planning is
also NP-hard, even for a point in a 3D polyhedral environment without differential
constraints [172]. The only known methods for exact planning under differential
constraints in the presence of obstacles are for the double integrator system q̈ = u,
for C = R [747] and C = R2 [171].

Section 14.1.2 provides some perspective on motion planning problems under
differential constraints that fall under Formulation 14.1, which assumes that the
initial state is given and future states are predictable. Section 14.5 briefly addresses
the broader problem of feedback motion planning under differential constraints.

14.1.2 Different Kinds of Planning Problems

There are many ways to classify motion planning problems under differential con-
straints. Some planning approaches rely on particular properties of the system;
therefore, it is helpful to characterize these general differences. The different kinds
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of problems described here are specializations of Formulation 14.1. In spite of dif-
ferences based on the kinds of models described below, all of them can be unified
under the topic of planning under differential constraints.

One factor that affects the differential model is the way in which the task
is decomposed. For example, the task of moving a robot usually requires the
consideration of mechanics. Under the classical robotics approach that was shown
in Figure 1.19, the motion planning problem is abstracted away from the mechanics
of the robot. This enables the motion planning ideas of Part II to be applied. This
decomposition is arbitrary. The mechanics of the robot can be considered directly
in the planning process. Another possibility is that only part of the constraints
may be considered. For example, perhaps only the rolling constraints of a vehicle
are considered in the planning process, but dynamics are handled by another
planning module. Thus, it is important to remember that the kinds of differential
constraints that appear in the planning problem depend not only on the particular
mechanical system, but also on how the task is decomposed.

14.1.2.1 Terms from planning literature

Nonholonomic planning The term nonholonomic planning was introduced by
Laumond [593] to describe the problem of motion planning for wheeled mobile
robots (see [595, 633] for overviews). It was informally explained in Section 13.1
that nonholonomic refers to differential constraints that cannot be completely
integrated. This means they cannot be converted into constraints that involve no
derivatives. A more formal definition of nonholonomic will be given in Section
15.4. Most planning research has focused on velocity constraints on C, as opposed
to a phase space X. This includes most of the models given in Section 13.1, which
are specified as nonintegrable velocity constraints on the C-space C. These are
often called kinematic constraints, to distinguish them from constraints that arise
due to dynamics.

In mechanics and control, the term nonholonomic also applies to nonintegrable
velocity constraints on a phase space [112, 113]. Therefore, it is perfectly rea-
sonable for the term nonholonomic planning to refer to problems that also involve
dynamics. However, in most applications to date, the term nonholonomic planning
is applied to problems that have kinematic constraints only. This is motivated pri-
marily by the early consideration of planning for wheeled mobile robots. In this
book, it will be assumed that nonholonomic planning refers to planning under
nonintegrable velocity constraints on C or any phase space X.

For the purposes of sampling-based planning, complete integrability is actually
not important. In many cases, even if it can be theoretically established that
constraints are integrable, it does not mean that performing the integration is
practical. Furthermore, even if integration can be performed, each constraint
may be implicit and therefore not easily parameterizable. Suppose, for example,
that constraints arise from closed kinematic chains. Usually, a parameterization
is not available. By differentiating the closure constraint, a velocity constraint is
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obtained on C. This can be treated in a sampling-based planner as if it were a
nonholonomic constraint, even though it can easily be integrated.

Kinodynamic planning The term kinodynamic planning was introduced by
Canny, Donald, Reif, and Xavier [290] to refer to motion planning problems for
which velocity and acceleration bounds must be satisfied. This means that there
are second-order constraints on C. The original work used the double integrator
model q̈ = u for C = R2 and C = R3. A scalar version of this model appeared
Example 13.3. More recently, the term has been applied by some authors to
virtually any motion planning problem that involves dynamics. Thus, any problem
that involves second-order (or higher) differential constraints can be considered
as a form of kinodynamic planning. Thus, if x includes velocity variables, then
kinodynamic planning includes any system, ẋ = f(x, u).

Note that kinodynamic planning is not necessarily a form of nonholonomic
planning; in most cases considered so far, it is not. A problem may even involve
both nonholonomic and kinodynamic planning. This requires the differential con-
straints to be both nonintegrable and at least second-order. This situation often
results from constrained Lagrangian analysis, covered in Section 13.4.3. The car
with dynamics which was given Section 13.3.3 is both kinodynamic and nonholo-
nomic.

Trajectory planning The term trajectory planning has been used for decades
in robotics to refer mainly to the problem of determining both a path and velocity
function for a robot arm (e.g., PUMA 560). This corresponds to finding a path
in the phase space X in which x ∈ X is defined as x = (q, q̇). Most often the
problem is solved using the refinement approach mentioned in Section 1.4 by first
computing a path through Cfree. For each configuration q along the path, a velocity
q̇ must be computed that satisfies the differential constraints. An inverse control
problem may also exist, which involves computing for each t, the action u(t) that
results in the desired q̇(t). The refinement approach is often referred to as time
scaling of a path through C [456]. In recent times, trajectory planning seems
synonymous with kinodynamic planning, assuming that the constraints are second-
order (x includes only configuration and velocity variables). One distinction is that
trajectory planning still perhaps bears the historical connotations of an approach
that first plans a path through Cfree.

14.1.2.2 Terms from control theory

A significant amount of terminology that is appropriate for planning has been
developed in the control theory community. In some cases, there are even conflicts
with planning terminology. For example, the term motion planning has been used
to refer to nonholonomic planning in the absence of obstacles [156, 727]. This can
be considered as a kind of BVP. In some cases, this form of planning is referred to
as the steering problem (see [596, 725]) and will be covered in Section 15.5. The
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term motion planning is reserved in this book for problems that involve obstacle
avoidance and possibly other constraints.

Open-loop control laws Differential models, such as any of those from Chapter
13, are usually referred to as control systems or just systems, a term that we have
used already. These are divided into linear and nonlinear systems, as described
in Sections 13.2.2 and 13.2.3, respectively. Formulation 14.1 can be considered in
control terminology as the design of an open-loop control law for the system (sub-
jected to nonconvex constraints on the state space). The open-loop part indicates
that no feedback is used. Only the action trajectory needs to be specified over
time (the feedback case is called closed-loop; recall Section 8.1). Once the initial
state is given, the state trajectory can be inferred from the action trajectory. It
may also be qualified as a feasible open-loop control law, to indicate that it satis-
fies all constraints but is not necessarily optimal. It is then interesting to consider
designing an optimal open-loop control law. This is extremely challenging, even
for problems that appear to be very simple. Elegant solutions exist for some re-
stricted cases, including linear systems and some wheeled vehicle models, but in
the absence of obstacles. These are covered in Chapter 15.

Drift The term drift arose in Section 13.2.1 and implies that from some states it
is impossible to instantaneously stop. This difficulty arises in mechanical systems
due to momentum. Infinite deceleration, and therefore infinite energy, would be
required to remove all kinetic energy from a mechanical system in an instant of
time. Kinodynamic and trajectory planning generally involve drift. Nonholonomic
planning problems may be driftless if only velocity constraints exist on the C-space;
the models of Section 13.1.2 are driftless. From a planning perspective, systems
with drift are usually more challenging than driftless systems.

Underactuation Action variables, the components of u, are often referred to
as actuators, and a system is called underactuated if the number of actuators is
strictly less than the dimension of C. In other words, there are less independent
action variables than the degrees of freedom of the mechanical system. Under-
actuated nonlinear systems are typically nonholonomic. Therefore, a substantial
amount of nonholonomic system theory and planning for nonholonomic systems
involves applications to underactuated systems. As an example of an underactu-
ated system, consider a free-floating spacecraft in R3 that has three thrusters. The
amount of force applied by each thruster can be declared as an action variable;
however, the system is underactuated because there are only three actuators, and
the dimension of C is six. Other examples appeared Section 13.1.2. If the system
is not underactuated, it is called fully actuated, which means that the number
of actuators is equal to the dimension of C. Kinodynamic planning has mostly
addressed fully actuated systems.
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Cobs

Xobs

X

C

Figure 14.1: An obstacle region Cobs ⊂ C generates a cylindrical obstacle region
Xobs ⊂ X with respect to the phase variables.

Symmetric systems Finally, one property of systems that is important in some
planning algorithms is symmetry.1 A system ẋ = f(x, u) is symmetric if the
following condition holds. If there exists an action trajectory that brings the
system from some xI to some xG, then there exists another action trajectory that
brings the system from xG to xI by visiting the same points in X, but in reverse
time. At each point along the path, this means that the velocity can be negated by
a different choice of action. Thus, it is possible for a symmetric system to reverse
any motions. This is usually not possible for systems with drift. An example of
a symmetric system is the differential drive of Section 13.1.2. For the simple car,
the Reeds-Shepp version is symmetric, but the Dubins version is not because the
car cannot travel in reverse.

14.1.3 Obstacles in the Phase Space

In Formulation 14.1, the specification of the obstacle region in Item 4 was inten-
tionally left ambiguous. Now it will be specified in more detail. If X = C, then
Xobs = Cobs, which was defined in (4.34) for a rigid robot and in (4.36) for a robot
with multiple links. The more interesting case occurs if X is a phase space that
includes velocity variables in addition to configuration information.

Any state for which its associated configuration lies in Cobs must also be a
member of Xobs. The velocity is irrelevant if a collision occurs in the world W . In
most cases that involve a phase space, the obstacle region Xobs is therefore defined

1Sometimes in control theory, the term symmetry applies to Lie groups. This is a different
concept and means that the system is invariant with respect to transformations in a group such
as SE(3). For example, the dynamics of a car should not depend on the direction in which the
car is pointing.
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NASA/Lockheed Martin X-33 Re-entry trajectory

Figure 14.2: In the NASA/Lockheed Martin X-33 re-entry problem, there are
complicated constraints on the phase variables, which avoid states that cause the
craft to overheat or vibrate uncontrollably. (Courtesy of NASA)

as
Xobs = {x ∈ X | κ(x) ∈ Cobs}, (14.2)

in which κ(x) is the configuration associated with the state x ∈ X. If the first n
variables ofX are configuration parameters, thenXobs has the cylindrical structure
shown in Figure 14.1 with respect to the other variables. If κ is a complicated
mapping, as opposed to simply selecting the configuration coordinates, then the
structure might not appear cylindrical. In these cases, (14.2) still indicates the
correct obstacle region in X.

14.1.3.1 Additional constraints on phase variables

In many applications, additional constraints may exist on the phase variables.
These are called phase constraints and are generally of the form hi(x) ≤ 0. For
example, a car or hovercraft may have a maximum speed for safety reasons. There-
fore, simple bounds on the velocity variables will exist. For example, it might be
specified that ‖q̇‖ ≤ q̇max for some constant q̇max ∈ (0,∞). Such simple bounds
are often incorporated directly into the definition of X by placing limits on the
velocity variables.

In other cases, however, constraints on velocity may be quite complicated. For
example, the problem of computing the re-entry trajectory of the NASA/Lockheed
Martin X-33 reusable spacecraft2 (see Figure 14.2) requires remaining within a
complicated, narrow region in the phase space. Even though there are no hard
obstacles in the traditional sense, many bad things can happen by entering the
wrong part of the phase space. For example, the craft may overheat or vibrate
uncontrollably [160, 201, 662]. For a simpler example, imagine constraints on X

2This project was canceled in 2001, but similar crafts have been under development.
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to ensure that an SUV or a double-decker tour bus (as often seen in London, for
example) will not tumble sideways while turning.

The additional constraints can be expressed implicitly as hi(x) ≤ 0. As part
of determining whether some state x lies in Xfree or Xobs, it must be substituted
into each constraint to determine whether it is satisfied. If a state lies in Xfree,
it will generally be called violation-free, which implies that it is both collision-free
and does not violate any additional phase constraints.

14.1.3.2 The region of inevitable collision

One of the most challenging aspects of planning can be visualized in terms of the
region of inevitable collision, denoted by Xric. This is the set of states from which
entry into Xobs will eventually occur, regardless of any actions that are applied.
As a simple example, imagine that a robotic vehicle is traveling 100 km/hr toward
a large wall and is only 2 meters away. Clearly the robot is doomed. Due to
momentum, collision will occur regardless of any efforts to stop or turn the vehicle.
At low enough speeds, Xric and Xobs are approximately the same; however, Xric

grows dramatically as the speed increases.
Let U∞ denote the set of all trajectories ũ : [0,∞)→ U for which the termina-

tion action uT is never applied (we do not want inevitable collision to be avoided
by simply applying uT ). The region of inevitable collision is defined as

Xric = {x(0) ∈ X | for any ũ ∈ U∞ , ∃t > 0 such that x(t) ∈ Xobs}, (14.3)

in which x(t) is the state at time t obtained by applying (14.1) from x(0). This
does not include cases in which motions are eventually blocked, but it is possible
to bring the system to a state with zero velocity. Suppose that the Dubins car
from Section 13.1.2 is used and the car is unable to back its way out of a dead-end
alley. In this case, it can avoid collision by stopping and remaining motionless. If
it continues to move, it will eventually have no choice but to collide. This case
appears more like being trapped and technically does not fit under the definition
of Xric. For driftless systems, Xric = Xobs.

Example 14.1 (Region of Inevitable Collision) Figure 14.3 shows a simple
illustration of Xric. Suppose that W = R, and the robot is a particle (or point
mass) that moves according to the double integrator model q̈ = u (for mass, as-
sume m = 1). For simplicity, suppose that u represents a force that must be
chosen from U = [−1, 1]. The C-space is C = R, the phase space is X = R2, and a
phase (or state) is expressed as x = (q, q̇). Suppose that there are two obstacles in
C: a point and an interval. These are shown in Figure 14.3 along the q-axis. In the
cylinder above them, Xobs appears. In the slice at q̇ = 0, Xric = Xobs = Cobs. As
q̇ increases, Xric becomes larger, even though Xobs remains fixed. Note that Xric

only grows toward the left because q̇ > 0 indicates a positive velocity, which causes
momentum in the positive q direction. As this momentum increases, the distance
required to stop increases quadratically. From a speed of q̇ = v, the minimum
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q
q̇ = 0

q̇ < 0

q̇ > 0

q̇ Xric

Xric

Xric

Xobs

Xric

Figure 14.3: The region of inevitable collision grows quadratically with the speed.

distance required to stop is v2/2, which can be calculated by applying the action
u = −1 and integrating q̈ = u twice. If q̇ > 0 and q is to the right of an obstacle,
then it will safely avoid the obstacle, regardless of its speed. If q̇ < 0, then Xric

extends to the right instead of the left. Again, this is due to the required stopping
distance. �

In higher dimensions and for more general systems, the problem becomes sub-
stantially more complicated. For example, in R2 the robot can swerve to avoid
small obstacles. In general, the particular direction of motion becomes important.
Also, the topology of Xric may be quite different from that of Xobs. Imagine that a
small airplane flies into a cave that consists of a complicated network of corridors.
Once the plane enters the cave, there may be no possible actions that can avoid
collision. The entire part of the state space that corresponds to the plane in the
cave would be included in Xric. Furthermore, even parts of the state space from
which the plane cannot avoid entering the cave must be included.

In sampling-based planning under differential constraints, Xric is not computed
because it is too complicated.3 It is not even known how to make a “collision de-
tector” for Xric. By working instead with Xobs, challenges arise due to momentum.
There may be large parts of the state space that are never worth exploring because
they lie in Xric. Unfortunately, there is no practical way at present to accurately
determine whether states lie in Xric. As the momentum and amount of clutter
increase, this becomes increasingly problematic.

3It may, however, be possible to compute crude approximations of Xric and use them in
planning.
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14.2 Reachability and Completeness

This section provides preliminary concepts for sampling-based planning algorithms.
In Chapter 5, sampling over C was of fundamental importance. The most impor-
tant consideration was that a sequence of samples should be dense so that samples
get arbitrarily close to any point in Cfree. Planning under differential constraints
is complicated by the specification of solutions by an action trajectory instead
of a path through Xfree. For sampling-based algorithms to be resolution com-
plete, sampling and searching performed on the space of action trajectories must
somehow lead to a dense set in Xfree.

14.2.1 Reachable Sets

For the algorithms in Chapter 5, resolution completeness and probabilistic com-
pleteness rely on having a sampling sequence that is dense on C. In the present
setting, this would require dense sampling on X. Differential constraints, however,
substantially complicate the sampling process. It is generally not reasonable to
prescribe precise samples in X that must be reached because reaching them may
be impossible or require solving a BVP. Since paths in X are obtained indirectly
via action trajectories, completeness analysis begins with considering which points
can be reached by integrating action trajectories.

14.2.1.1 Reachable set

Assume temporarily that there are no obstacles: Xfree = X. Let U be the set of
all permissible action trajectories on the time interval [0,∞). From each ũ ∈ U , a
state trajectory x̃(x0, ũ) is defined using (14.1). Which states in X are visited by
these trajectories? It may be possible that all of X is visited, but in general some
states may not be reachable due to differential constraints.

Let R(x0,U) ⊆ X denote the reachable set from x0, which is the set of all states
that are visited by any trajectories that start at x0 and are obtained from some
ũ ∈ U by integration. This can be expressed formally as

R(x0,U) = {x1 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = x1}, (14.4)

in which x(t) is given by (14.1) and requires that x(0) = x0.
The following example illustrates some simple cases.

Example 14.2 (Reachable Sets for Simple Inequality Constraints) Sup-
pose that X = C = R2, and recall some of the simple constraints from Section
13.1.1. Let a point in R2 be denoted as q = (x, y). Let the state transition equation
be ẋ = u1 and ẏ = u2, in which (u1, u2) ∈ U = R2.

Several constraints will now be imposed on U , to define different possible action
spaces. Suppose it is required that u1 > 0 (this was ẋ > 0 in Section 13.1.1). The
reachable set R(q0,U) from any q0 = (x0, y0) ∈ R2 is an open half-plane that is
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defined by the set of all points to the right of the vertical line x = x0. In the case
of u1 ≤ 0, then R(q0,U) is a closed half-plane to the left of the same vertical line.
If U is defined as the set of all (u1, u2) ∈ R2 such that u1 > 0 and u2 > 0, then
the reachable set from any point is a quadrant.

For the constraint au1 + bu2 = 0, the reachable set from any point is a line in
R2 with normal vector (a, b). The location of the line depends on the particular
q0. Thus, a family of parallel lines is obtained by considering reachable states from
different initial states. This is an example of a foliation in differential geometry,
and the lines are called leaves [872].

In the case of u2
1 + u2

2 ≤ 1, the reachable set from any (x0, y0) is R
2. Thus, any

state can reach any other state. �

So far the obstacle region has not been considered. Let Ufree ⊆ U denote the
set of all action trajectories that produce state trajectories that map into Xfree. In
other words, Ufree is obtained by removing from U all action trajectories that cause
entry into Xobs for some t > 0. The reachable set that takes the obstacle region
into account is denoted R(x0,Ufree), which replaces U by Ufree in (14.4). This
assumes that for the trajectories in Ufree, the termination action can be applied
to avoid inevitable collisions due to momentum. A smaller reachable set could
have been defined that eliminates trajectories for which collision inevitably occurs
without applying uT .

The completeness of an algorithm can be expressed in terms of reachable sets.
For any given pair xI , xG ∈ Xfree, a complete algorithm must report a solution
action trajectory if xG ∈ R(xI ,Ufree), or report failure otherwise. Completeness is
too difficult to achieve, except for very limited cases [171, 747]; therefore, sampling-
based notions of completeness are more valuable.

14.2.1.2 Time-limited reachable set

Consider the set of all states that can be reached up to some fixed time limit. Let
the time-limited reachable set R(x0,U , t) be the subset of R(x0,U) that is reached
up to and including time t. Formally, this is

R(x0,U , t) = {x1 ∈ X | ∃ũ ∈ U and ∃t′ ∈ [0, t] such that x(t′) = x1}. (14.5)

For the last case in Example 14.2, the time-limited reachable sets are closed discs
of radius t centered at (x0, y0). A version of (14.5) that takes the obstacle region
into account can be defined as R(x0,Ufree, t).

Imagine an animation of R(x0,U , t) that starts at t = 0 and gradually increases
t. The boundary of R(x0,U , t) can be imagined as a propagating wavefront that
begins at x0. It eventually reaches the boundary of R(x0,U) (assuming it has a
boundary; it does not if R(x0,U) = X). The boundary of R(x0,U , t) can actually
be interpreted as a level set of the optimal cost-to-come from x0 for a cost functional
that measures the elapsed time. The boundary is also a kind of forward projection,
as considered for discrete spaces in Section 10.1.2. In that context, possible future
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Wrong!

(a) (b)

Figure 14.4: (a) The time-limited reachable set for the Dubins car facing to the
right; (b) this is not the time-limited reachable set for the Reeds-Shepp car!

states due to nature were specified in the forward projection. In the current
setting, possible future states are determined by the unspecified actions of the
robot. Rather than looking k stages ahead, the time-limited reachable set looks for
duration t into the future. In the present context there is essentially a continuum
of stages.

Example 14.3 (Reachable Sets for Simple Cars) Nice illustrations of reach-
able sets can be obtained from the simple car models from Section 13.1.2. Suppose
that X = C = R2 × S1 and Xobs = ∅.

Recall that the Dubins car can only drive forward. From an arbitrary con-
figuration, the time-limited reachable set appears as shown in Figure 14.4a. The
time limit t is small enough so that the car cannot rotate by more than π/2. Note
that Figure 14.4a shows a 2D projection of the reachable set that gives translation
only. The true reachable set is a 3D region in C. If t > 2π, then the car will
be able to drive in a circle. For any q, consider the limiting case as t approaches
infinity, which results in R(q,U). Imagine a car driving without reverse on an
infinitely large, flat surface. It is possible to reach any desired configuration by
driving along a circle, driving straight for a while, and then driving along a circle
again. Therefore, R(q,U) = C for any q ∈ C. The lack of a reverse gear means
that some extra maneuvering space may be needed to reach some configurations.

Now consider the Reeds-Shepp car, which is allowed to travel in reverse. Any
time-limited reachable set for this car must include all points from the correspond-
ing reachable set for the Dubins car because new actions have been added to U but
none have been removed. It is tempting to assert that the time-limited reachable
set appears as in Figure 14.4b; however, this is wrong. In an arbitrarily small
amount of time (or space) a car with reverse can be wiggled sideways. This is
achieved in practice by familiar parallel-parking maneuvers. It turns out in this
case that R(q,U , t) always contains an open set around q, which means that it
grows in all directions (see Section 15.3.2). The property is formally referred to as
small-time controllability and is covered in Section 15.4. �
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14.2.1.3 Backward reachable sets

The reachability definitions have a nice symmetry with respect to time. Rather
than describing all points reachable from some x ∈ X, it is just as easy to describe
all points from which some x ∈ X can be reached. This is similar to the alternative
between forward and backward projections in Section 10.1.2.

Let the backward reachable set be defined as

B(xf ,U) = {x0 ∈ X | ∃ũ ∈ U and ∃t ∈ [0,∞) such that x(t) = xf}, (14.6)

in which x(t) is given by (14.1) and requires that x(0) = x0. Note the intentional
similarity to (14.4). The time-limited backward reachable set is defined as

B(xf ,U , t) = {x0 ∈ X | ∃ũ ∈ U and ∃t′ ∈ [0, t] such that x(t′) = xf}, (14.7)

which once again requires that x(0) = x0 in (14.1). Completeness can even be de-
fined in terms of backward reachable sets by defining a backward-time counterpart
to U .

At this point, there appear to be close parallels between forward, backward, and
bidirectional searches from Chapter 2. The same possibilities exist in sampling-
based planning under differential constraints. The forward and backward reachable
sets indicate the possible states that can be reached under such schemes. The
algorithms explore subsets of these reachable sets.

14.2.2 The Discrete-Time Model

This section introduces a simple and effective way to sample the space of ac-
tion trajectories. Section 14.2.3 covers the more general case. Under differential
constraints, sampling-based motion planning algorithms all work by sampling the
space of action trajectories. This results in a reduced set of possible action trajec-
tories. To ensure some form of completeness, a motion planning algorithm should
carefully construct and refine the sample set. As in Chapter 5, the qualities of
a sample set can be expressed in terms of dispersion and denseness. The main
difference in the current setting is that the algorithms here work with a sample
sequence over U , as opposed to over C as in Chapter 5. This is required because
solution paths can no longer be expressed directly on C (or X).

The discrete-time model is depicted in Figure 14.5 and is characterized by three
aspects:

1. Time T is partitioned into intervals of length ∆t. This enables stages to
be assigned, in which stage k indicates that (k − 1)∆t units of time have
elapsed.

2. A finite subset Ud of the action space U is chosen. If U is already finite, then
this selection may be Ud = U .

3. The action u(t) ∈ Ud must remain constant over each time interval.
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T

U

T

U

A trajectory in U A trajectory in Ud
Figure 14.5: The discrete-time model results in Ud ⊂ U , which is obtained by
partitioning time into regular intervals and applying a constant action over each
interval. The action is chosen from a finite subset Ud of U .

The first two discretize time and the action spaces. The third condition is needed
to relate the time discretization to the space of action trajectories. Let Ud denote
the set of all action trajectories allowed under a given time discretization. Note
that Ud completely specifies the discrete-time model.

For some problems, U may already be finite. Imagine, for example, a model of
firing one of several thrusters (turn them on or off) on a free-floating spacecraft. In
this case no discretization of U is necessary. In the more general case, U may be a
continuous set. The sampling methods of Section 5.2 can be applied to determine
a finite subset Ud ⊆ U .

Any action trajectory in Ud can be conveniently expressed as an action sequence
(u1, u2, . . . , uk), in which each ui ∈ Ud gives the action to apply from time (i−1)∆t
to time i∆t. After stage k, it is assumed that the termination action is applied.

14.2.2.1 Reachability graph

After time discretization has been performed, the reachable set can be adapted to
Ud to obtain R(x0,Ud). An interesting question is: What is the effect of sampling
on the reachable set? In other words, how do R(x0,U) and R(x0,Ud) differ?
This can be addressed by defining a reachability graph, which will be revealed
incrementally by a planning algorithm.

Let Tr(x0,Ud) denote a reachability tree, which encodes the set of all trajectories
from x0 that can be obtained by applying trajectories in Ud. Each vertex of
Tr(x0,Ud) is a reachable state, x ∈ R(x0,Ud). Each edge of Tr(x0,Ud) is directed; its
source represents a starting state, and its destination represents the state obtained
by applying a constant action u ∈ Ud over time ∆t. Each edge e represents an
action trajectory segment, e : [0,∆t] → U . This can be transformed into a state
trajectory, x̃e, via integration using (14.1), from 0 to ∆t of f(x, u) from the source
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Two stages Four stages

Figure 14.6: A reachability tree for the Dubins car with three actions. The kth
stage produces 3k new vertices.

state of e.
Thus, in terms of x̃e, Tr can be considered as a topological graph in X (Tr will

be used as an abbreviation of Tr(x0,Ud)). The swath S(Tr) of Tr is

S(Tr) =
⋃

e∈E

⋃

t∈[0,∆t]

xe(t), (14.8)

in which xe(t) denotes the state obtained at time t from edge e. (Recall topological
graphs from Example 4.6 and the swath from Section 5.5.1.)

Example 14.4 (Reachability Tree for the Dubins Car) Several stages of the
reachability tree for the Dubins car are shown in Figure 14.6. Suppose that there
are three actions (straight, right-turn, left-turn), and ∆t is chosen so that if the
right-turn or left-turn action is applied, the car travels enough to rotate by π/2.
After the second stage, there are nine leaves in the tree, as shown in Figure 14.6a.
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Each stage produces 3k new leaves. In Figure 14.6b, 81 new leaves are added in
stage k = 4, which yields a total of 81 + 27 + 9 + 3 + 1 vertices. In many cases,
the same state is reachable by different action sequences. The swath after the first
four stages is the set of all points visited so far. This is a subset of C that is the
union of all vertices and all points traced out by x̃e for each e ∈ E. �

From Example 14.4 it can be seen that it is sometimes possible to arrive at
the same state using two or more alternative action trajectories. Since each action
trajectory can be expressed as an action sequence, the familiar issue arises from
classical AI search of detecting whether the same state has been reached from
different action sequences. For some systems, the reachability problem can be
dramatically simplified by exploiting this information. If the same state is reached
from multiple action sequences, then only one vertex needs to be represented.

This yields a directed reachability graph Gr(x0,Ud), which is obtained from
Tr(x0,Ud) by merging its duplicate states. If every action sequence arrives at a
unique state, then the reachability graph reduces to the reachability tree. However,
if multiple action sequences arrive at the same state, this is represented as a single
vertex Gr. From this point onward, the reachability graph will be primarily used.
As for a reachability tree, a reachability graph can be interpreted as a topological
graph in X, and its swath S(Gr) is defined by adapting (14.8).

The simplest case of arriving at the same state was observed in Example 2.1.
The discrete grid in the plane can be modeled using the terminology of Chapter
13 as a system of the form ẋ = u1 and ẏ = u2 for a state space X = R2. The
discretized set Ud of actions is {(1, 0), (0, 1), (−1, 0), (0,−1)}. Let ∆t = 1. In this
case, the reachability graph becomes the familiar 2D grid. If (0, 0) is the initial
state, then the grid vertices consist of all states in which both coordinates are
integers.

Through careless discretization of an arbitrary system, such a nice grid usually
does not arise. However, in many cases a discretization can be carefully chosen
so that the states become trapped on a grid or lattice. This has some advantages
in sampling-based planning. Section 14.4.1 covers a method that exploits such
structure for the system q̈ = u. It can even be extended to more general systems,
provided that the system can be expressed as q̈ = g(q, q̇, u) and it is not under-
actuated. It was shown recently that by a clever choice of discretization, a very
large class of nonholonomic systems4 can also be forced onto a lattice [762]. This
is usually difficult to achieve, and under most discretizations the vertices of the
reachability graph are dense in the reachable set.

It is also possible to define backward versions of the reachability tree and
reachability graph, in the same way that backward reachable sets were obtained.
These indicate initial states and action sequences that will reach a given goal state
and are no more difficult to define or compute than their forward counterparts.

4The class is all driftless, nilpotent systems. The term nilpotent will be defined in Section
15.5.



14.2. REACHABILITY AND COMPLETENESS 805

They might appear more difficult, but keep in mind that the initial states are not
fixed; thus, no BVP appears. The initial states can be obtained by reverse-time
integration of the state transition equation; see Section 14.3.2.

14.2.2.2 Resolution completeness for ẋ = u

Sampling-based notions of completeness can be expressed in terms of reachable
sets and the reachability graph. The requirement is to sample U in a way that
causes the vertices of the reachability graph to eventually become dense in the
reachable set, while also making sure that the reachability graph is systematically
searched. All of the completeness concepts can be expressed in terms of forward
or backward reachability graphs. Only the forward case will be described because
the backward case is very similar.

To help bridge the gap with respect to motion planning as covered in Part II,
first suppose: 1) X = C = R2, 2) a state is denoted as q = (x, y), 3) U = [−1, 1]2,
and 4) the state transition equation is ẋ = u1 and ẏ = u2. Suppose that the
discrete-time model is applied to U . Let ∆t = 1 and

Ud = {(−1, 0), (0,−1), (1, 0), (0, 1)}, (14.9)

which yields the Manhattan motion model from Example 7.4. Staircase paths
are produced as was shown in Figure 7.40. In the present setting, these paths are
obtained by integrating the action trajectory. From some state xI , the reachability
graph represents the set of all possible staircase paths with unit step size that can
be obtained via (14.1).

Suppose that under this model, Xfree is a bounded, open subset of R2. The
connection to resolution completeness from Chapter 5 can be expressed clearly in
this case. For any fixed ∆t, a grid of a certain resolution is implicitly defined via
the reachability graph. The task is to find an action sequence that leads to the goal
(or a vertex close to it in the reachability graph) while remaining in Xfree. Such
a sequence can be found by a systematic search, as considered in Section 2.2. If
the search is systematic, then it will correctly determine whether the reachability
graph encodes a solution. If no solution exists, then the planning algorithm can
decrease ∆t by a constant factor (e.g., 2), and perform the systematic search
again. This process repeats indefinitely until a solution is found. The algorithm
runs forever if no solution exists (in practice, of course, one terminates early and
gives up). The approach just described is resolution complete in the sense used in
Chapter 5, even though all paths are expressed using action sequences.

The connection to ordinary motion planning is clear for this simple model
because the action trajectories integrate to produce motions that follow a grid.
As the time discretization is improved, the staircase paths can come arbitrarily
close to some solution path. Looking at Figure 14.5, it can be seen that as the
sampling resolution is improved with respect to U and T , the trajectories obtained
via discrete-time approximations converge to any trajectory that can be obtained
by integrating some ũ. In general, convergence occurs as ∆t and the dispersion
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of the sampling in U are driven to zero. This also holds in the same way for the
more general case in which ẋ = u and X is any smooth manifold. Imagine placing
a grid down on X and refining it arbitrarily by reducing ∆t.

14.2.2.3 Resolution completeness for ẋ = f(x, u)

Beyond the trivial case of ẋ = u, the reachability graph is usually not a simple
grid. Even if X is bounded, the reachability graph may have an infinite number of
vertices, even though ∆t is fixed and Ud is finite. For a simple example, consider
the Dubins car under the discretization ∆t = 1. Fix uφ = −φmax (turn left) for
all t ∈ T . This branch alone generates a countably infinite number of vertices
in the reachability graph. The circumference of the circle is 2πρmin, in which
ρmin is the minimum turning radius. Let ρmin = 1. Since the circumference is an
irrational number, it is impossible to revisit the initial point by traveling k seconds
for some integer k. It is even impossible to revisit any point on the circle. The set
of vertices in the reachability graph is actually dense in the circle. This did not
happen in Figure 14.6 because ∆t and the circumference were rationally related
(i.e., one can be obtained from the other via multiplication by a rational number).
Consider what happens in the current example when ρmin = 1/π and ∆t = 1.

Suppose that ẋ = f(x, u) and the discrete-time model is used. To ensure
convergence of the discrete-time approximation, f must be well-behaved. This
can be established by requiring that all of the derivatives of f with respect to u
and x are bounded above and below by a constant. More generally, f is assumed
to be Lipschitz, which is an equivalent condition for cases in which the derivatives
exist, but it also applies at points that are not differentiable. If U is finite, then
the Lipschitz condition is that there exists some c ∈ (0,∞) such that

‖f(x, u)− f(x′, u)‖ ≤ c‖x− x′‖ (14.10)

for all x, x′ ∈ X, for all u ∈ U , and ‖ · ‖ denotes a norm on X. If U is infinite,
then the condition is that there must exist some c ∈ (0,∞) such that

‖f(x, u)− f(x′, u′)‖ ≤ c(‖x− x′‖+ ‖u− u′‖), (14.11)

for all x, x′ ∈ X, and for all u, u′ ∈ U . Intuitively, the Lipschitz condition indicates
that if x and u are approximated by x′ and u′, then the error when substituted
into f will be manageable. If convergence to optimal trajectories with respect
to a cost functional is important, then Lipschitz conditions are also needed for
l(x, u). Under such mild assumptions, if ∆t and the dispersion of samples of Ud

is driven down to zero, then the trajectories obtained from integrating discrete
action sequences come arbitrarily close to solution trajectories. In other words,
action sequences provide arbitrarily close approximations to any ũ ∈ U . If f is
Lipschitz, then the integration of (14.14) yields approximately the same result for
ũ as the approximating action sequence.

In the limit as ∆t and the dispersion of Ud approach zero, the reachability
graph becomes dense in the reachable set R(xI ,U). Ensuring a systematic search
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Figure 14.7: By systematically alternating between exploring different reachability
graphs, resolution completeness can be achieved, even if each reachability graph
has a countably infinite number of vertices.

for the case of a grid was not difficult because there is only a finite number of
vertices at each resolution. Unfortunately, the reachability graph may generally
have a countably infinite number of vertices for some fixed discrete-time model,
even if X is bounded.

To see that resolution-complete algorithms nevertheless exist if the reachability
graph is countably infinite, consider triangular enumeration, which proves that
N×N is countable, in which N is the set of natural numbers. The proof proceeds
by giving a sequence that starts at (0, 0) and proceeds by sweeping diagonally
back and forth across the first quadrant. In the limit, all points are covered. The
same idea can be applied to obtain resolution-complete algorithms. A sequence of
discrete-time models can be made for which the time step ∆t and the dispersion
of the sampling of U approach zero. Each discretization produces a reachability
graph that has a countable number of vertices.

A resolution-complete algorithm can be made by performing the same kind
of zig-zagging that was used to show that N × N is countable. See Figure 14.7;
suppose that U is finite and Ud = U . Along the horizontal axis is a sequence of
improving discrete-time models. Each model generates its own reachability graph,
for which a systematic search eventually explores all of its vertices. Imagine this
exploration occurs one step at a time, in which one new vertex is reached in each
step. The vertical axis in Figure 14.7 indicates the number of vertices reached so
far by the search algorithm. A countably infinite set of computers could explore all
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of reachability graphs in parallel. With a single computer, it can still be assured
that everything is eventually explored by zig-zagging as shown. Thus a resolution-
complete algorithm always exists if U is finite. If U is not finite, then Ud must
also be refined as the time step is decreased. Of course, there are numerous other
ways to systematically explore all of the reachability graphs. The challenging task
is to find a way that leads to good performance in practice.

The discussion so far has assumed that a sampling-based algorithm can un-
cover a subgraph of the reachability graph. This neglects numerical issues such as
arithmetic precision and numerical integration error. Such issues can additionally
be incorporated into a resolution completeness analysis [196].

14.2.3 Motion Primitives

The discrete-time model of Section 14.2.2 is just one of many possible ways to
discretize the space of action trajectories. It will now be considered as a special
case of specifying motion primitives. The restriction to constant actions over
fixed time intervals may be too restrictive in many applications. Suppose we
want to automate the motions of a digital actor for use in a video game or film.
Imagine having a database of interesting motion primitives. Such primitives could
be extracted, for example, from motion capture data [35, 553]. For example, if the
actor is designed for kung-fu fighting, then each motion sequence may correspond
to a basic move, such a kick or punch. It is unlikely that such motion primitives
correspond to constant actions over a fixed time interval. The durations of the
motion primitives will usually vary.

Such models can generally be handled by defining a more general kind of dis-
cretization. The discrete-time model can be used to formulate a discrete-time state
transition equation of the form

xk+1 = fd(xk, uk), (14.12)

in which xk = x((k − 1)∆t), xk+1 = x(k∆t), and uk is the action in Ud that is
applied from time (k− 1)∆t to time k∆t. Thus, fd is a function fd : X ×Ud → X
that represents an approximation to f , the original state transition function. Every
constant action u ∈ Ud applied over ∆t can be considered as a motion primitive.

Now generalize the preceding construction to allow more general motion prim-
itives. Let ũp denote a motion primitive, which is a function from an interval of
time into U . Let the interval of time start at 0 and stop at tF (ũ

p), which is a final
time that depends on the particular primitive. From any state x ∈ Xfree, suppose
that a set Up(x) of motion primitives is available. The set may even be infinite, in
which case some additional sampling must eventually be performed over the space
of motion primitives by a local planning method. A state transition equation that
operates over discrete stages can be defined as

xk+1 = fp(xk, ũ
p
k), (14.13)
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Hover Forward flight

Steady left turn

Steady right turn

Figure 14.8: A maneuver automaton, proposed by Frazzoli [360], captures the
constraints on allowable sequences of motion primitives.

in which ũp
k is a motion primitive that must be chosen from Up(xk). The time

discretization model and (14.12) can be considered as a special case in which the
motion primitives are all constant over a fixed time interval [0,∆t). Note that in
(14.13) the stage index k does not necessarily correspond to time (k − 1)∆t. The
index k merely represents the fact that k− 1 motion primitives have been applied
so far, and it is time to decide on the kth motion primitive. The current time is
determined by summing the durations of all k−1 primitives applied so far. If a set
Up(x) of primitives is given for all x ∈ X, then a reachability graph and its swath
can be defined by simple extensions of the discrete-time case. The discrete-time
model Ud can now be interpreted as a special set of motion primitives.

For some motion primitives, it may not be possible to immediately sequence
them without applying transitional motions. For example, in [362], two different
kinds of motion primitives, called trim trajectories and maneuvers, are defined for
autonomous helicopter flight. The trim trajectories correspond to steady motions,
and maneuvers correspond to unsteady motions that are needed to make transi-
tions between steady motions. Transitions from one trim trajectory to another
are only permitted through the execution of a maneuver. The problem can be
nicely modeled as a hybrid system in which each motion primitive represents a
mode [360] (recall hybrid system concepts from Sections 7.3, 8.3.1, and 10.6). The
augmented state space is X ×M , in which M is a set of modes. The transition
equation (14.13) can be extended over the augmented state space so that motion
primitives can change modes in addition to changing the original state. The pos-
sible trajectories for the helicopter follow paths in a graph called the maneuver
automaton. An example from [360] is shown in Figure 14.8. Every edge and every
vertex corresponds to a mode in the maneuver automaton. Each edge or vertex
actually corresponds to a parameterized family of primitives, from which a partic-
ular one is chosen based on the state. A similar state machine is proposed in [452]
for animating humans, and the motion primitives are called behaviors.

Discretizations based on general motion primitives offer great flexibility, and in
many cases dramatic performance improvements can be obtained in a sampling-
based planning algorithm. The main drawback is that the burden of establishing
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resolution completeness is increased.

14.3 Sampling-Based Motion Planning Revisited

Now that the preliminary concepts have been defined for motion planning under
differential constraints, the focus shifts to extending the sampling-based planning
methods of Chapter 5. This primarily involves extending the incremental sampling
and searching framework from Section 5.4 to incorporate differential constraints.
Following the general framework, several popular methods are covered in Section
14.4 as special cases of the framework. If an efficient BVP solver is available,
then it may also be possible to extend sampling-based roadmaps of Section 5.6 to
handle differential constraints.

14.3.1 Basic Components

This section describes how Sections 5.1 to 5.3 are adapted to handle phase spaces
and differential constraints.

14.3.1.1 Distance and volume in X

Recall from Chapter 5 that many sampling-based planning algorithms rely on
measuring distances or volumes in C. If X = C, as in the wheeled systems from
Section 13.1.2, then the concepts of Section 5.1 apply directly. The equivalent is
needed for a general state space X, which may include phase variables in addition
to the configuration variables. In most cases, the topology of the phase variables
is trivial. For example, if x = (q, q̇), then each q̇i component is constrained to
an interval of R. In this case the velocity components are just an axis-aligned
rectangular region in Rn/2, if n is the dimension of X. It is straightforward in
this case to extend a measure and metric defined on C up to X by forming the
Cartesian product.

A metric can be defined using the Cartesian product method given by (5.4).
The usual difficulty arises of arbitrarily weighting different components and com-
bining them into a single scalar function. In the case of C, this has involved
combining translations and rotation. For X, this additionally includes velocity
components, which makes it more difficult to choose meaningful weights.

Riemannian metrics A rigorous way to define a metric on a smooth manifold is
to define a metric tensor (or Riemannian tensor), which is a quadratic function of
two tangent vectors. This can be considered as an inner product on X, which can
be used to measure angles. This leads to the definition of the Riemannian metric,
which is based on the shortest paths (called geodesics) in X [133]. An example
of this appeared in the context of Lagrangian mechanics in Section 13.4.1. The
kinetic energy, (13.70), serves as the required metric tensor, and the geodesics
are the motions taken by the dynamical system to conserve energy. The metric
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can be defined as the length of the geodesic that connects a pair of points. If
the chosen Riemannian metric has some physical significance, as in the case of
Lagrangian mechanics, then the resulting metric provides meaningful information.
Unfortunately, it may be difficult or expensive to compute its value.

The ideal distance function The ideal way to define distance on X is to use
a cost functional and then define the distance from x ∈ Xfree to x′ ∈ Xfree as the
optimal cost-to-go from x to x′ while remaining in Xfree. In some cases, it has
been also referred to as the nonholonomic metric, Carnot-Caratheodory metric,
or sub-Riemannian metric [596]. Note that this not a true metric, as mentioned
in Section 5.1.2, because the cost may not be symmetric. For example, traveling
a small distance forward with Dubins car is much shorter than traveling a small
distance backward. If there are obstacles, it may not even be possible to reach
configurations behind the car.

This concept of distance should be somewhat disturbing because it requires
optimally solving the motion planning problem of Formulation 14.1. Thus, it can-
not be practical for efficient use in a motion planning algorithm. Nevertheless,
understanding this ideal notion of distance can be very helpful in designing practi-
cal distance functions on X. For example, rather than using a weighted Euclidean
metric (often called Mahalanobis metric) for the Dubins car, a distance function
can be defined based on the length of the shortest path between two configura-
tions. These lengths are straightforward to compute, and are based on the optimal
curve families that will be covered in Section 15.3. This distance function neglects
obstacles, but it should still provide better distance information than the weighted
Euclidean metric. It may also be useful for car models that involve dynamics.

The general idea is to get as close as possible to the optimal cost-to-go without
having to perform expensive computations. It is often possible to compute a useful
underestimate of the optimal cost-to-go by neglecting some of the constraints, such
as obstacles or dynamics. This may help in applying A∗ search heuristics.

Defining measure As mentioned already, it is straightforward to extend a mea-
sure on C to X if the topology associated with the phase variables is trivial. It
may not be possible, however, to obtain an invariant measure. In most cases, C
is a transformation group, in which the Haar measure exists, thereby yielding the
“true” volume in a sense that is not sensitive to parameterizations of C. This was
observed for SO(3) in Section 5.1.4. For a general state space X, a Haar measure
may not exist. If a Riemannian metric is defined, then intrinsic notions of surface
integration and volume exist [133]; however, these may be difficult to exploit in a
sampling-based planning algorithm.

14.3.1.2 Sampling theory

Section 14.2.2 already covered some of the sampling issues. There are at least two
continuous spaces: X, and the time interval T . In most cases, the action space
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U is also continuous. Each continuous space must be sampled in some way. In
the limit, it is important that any sample sequence is dense in the space on which
sampling occurs. This was required for the resolution completeness concepts of
Section 14.2.2.

Sampling of T and U can be performed by directly using the random or deter-
ministic methods of Section 5.2. Time is just an interval of R, and U is typically
expressed as a convex m-dimensional subset of Rm. For example, U is often an
axis-aligned rectangular subset of Rm.

Some planning methods may require sampling on X. The definitions of dis-
crepancy and dispersion from Section 5.2 can be easily adapted to any measure
space and metric space, respectively. Even though it may be straightforward to
define a good criterion, generating samples that optimize the criterion may be
difficult or impossible.

A convenient way to avoid this problem is to work in a coordinate neighbor-
hood of X. This makes the manifold appear as an n-dimensional region in Rn,
which in many cases is rectangular. This enables the sampling concepts of Section
5.2 to be applied in a straightforward manner. While this is the most straightfor-
ward approach, the sampling quality depends on the particular parameterization
used to define the coordinate neighborhood. Note that when working with a co-
ordinate neighborhood (for example, by imagining that X is a cube), appropriate
identifications must be taken into account.

14.3.1.3 Collision detection

As in Chapter 5, efficient collision detection algorithms are a key enabler of
sampling-based planning. If X = C, then the methods of Section 5.3 directly
apply. If X includes phase constraints, then additional tests must be performed.
These constraints are usually given and are therefore straightforward to evaluate.
Recall from Section 4.3 that this is not efficient for the obstacle constraints on C
due to the complicated mapping between obstacles in W and obstacles in C.

If only pointwise tests are performed, the trajectory segment between the points
is not guaranteed to stay in Xfree. This problem was addressed in Section 5.3.4 by
using distance information from collision checking algorithms. The same problem
exists for the phase constraints of the form hi(x) ≤ 0. In this general form there is
no additional information that can be used to ensure that some neighborhood of
x is contained in Xfree. Fortunately, the phase constraints are not complicated in
most applications, and it is possible to ensure that x is at least some distance away
from the constraint boundary. In general, careful analysis of each phase constraint
is required to ensure that the state trajectory segments are violation-free.

In summary, determining whether x ∈ Xfree involves

1. Using a collision detection algorithm as in Section 5.3 to ensure that κ(x) ∈
Cfree.

2. Checking x to ensure that other constraints of the form hi(x) ≤ 0 have been
satisfied.
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System
Simulatorũt

x(0)

t

x̃t

Figure 14.9: Using a system simulator, the system ẋ = f(x, u) is integrated from
x(0) using ũt : [0, t]→ U to produce a state trajectory x̃t : [0, t]→ X. Sometimes
x̃ is specified as a parameterized path, but most often it is approximated as a
sequence of samples in X.

Entire trajectory segments should theoretically be checked. Often times, in prac-
tice, only individual points are checked, which is more efficient but technically
incorrect.

14.3.2 System Simulator

A new component is needed for sampling-based planning under differential con-
straints because of (14.1). Motions are now expressed in terms of an action trajec-
tory, but collision detection and constraint satisfaction tests must be performed in
X. Therefore, the system, ẋ = f(x, u) needs to be integrated frequently during the
planning process. Similar to the modeling of collision detection as a “black box,”
the integration process is modeled as a module called the system simulator. See
Figure 14.9. Since the systems considered in this chapter are time-invariant, the
starting time for any required integration can always be shifted to start at t = 0.
Integration can be considered as a module that implements (14.1) by computing
the state trajectory resulting from a given initial state x(0), an action trajectory
ũt, and time t. The incremental simulator encapsulates the details of integrating
the state transition equation so that they do not need to be addressed in the de-
sign of planners. However, that information from the particular state transition
equation may still be important in the design of the planning algorithm.

Closed-form solutions According to (14.1), the action trajectory must be in-
tegrated to produce a state trajectory. In some cases, this integration leads to a
closed-form expression. For example, if the system is a chain of integrators, then
a polynomial expression can easily be obtained for x(t). For example, suppose q is
a scalar and q̈ = u. If q(0) = q̇(0) = 0 and a constant action u = 1 is applied, then
x(t) = t2/2. If ẋ = f(x, u) is a linear system (which includes chains of integrators;
recall the definition from Section 13.2.2), then a closed-form expression for the
state trajectory can always be obtained. This is based on matrix exponentials and
is given in many control theory texts (e.g, [192]).

Euler method For most systems, the integration must be performed numeri-
cally. A system simulator based on numerical integration can be constructed by
breaking t into smaller intervals and iterating classical methods for computing
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numerical solutions to differential equations. The Euler method is the simplest of
these methods. Let ∆t denote a small time interval over which the approxima-
tion will be made. This can be considered as an internal parameter of the system
simulator. In practice, this ∆t is usually much smaller than the ∆t used in the
discrete-time model of Section 14.2.2. Suppose that x(0) and u(0) are given and
the task is to estimate x(∆t).

By performing integration over time, the state transition equation can be used
to determine the state after some fixed amount of time ∆t has passed. For example,
if x(0) is given and u(t′) is known over the interval t′ ∈ [0,∆t], then the state at
time ∆t can be determined as

x(∆t) = x(0) +

∫ ∆t

0

f(x(t), u(t))dt. (14.14)

The integral cannot be evaluated directly because x(t) appears in the integrand
and is unknown for time t > 0.

Using the fact that

f(x, u) = ẋ =
dx

dt
≈ x(∆t)− x(0)

∆t
, (14.15)

solving for x(∆t) yields the classic Euler integration method

x(∆t) ≈ x(0) + ∆t f(x(0), u(0)). (14.16)

The approximation error depends on how quickly x(t) changes over time and on
the length of the interval ∆t. If the planning algorithm applies a motion primitive
ũp, it gives tF (ũ

p) as the time input, and the system simulator may subdivide
the time interval to maintain higher accuracy. This allows the developer of the
planning algorithm to ignore numerical accuracy issues.

Runge-Kutta methods Although Euler integration is efficient and easy to un-
derstand, it generally yields poor approximations. Taking a Taylor series expansion
of x̃ at t = 0 yields

x(∆t) = x(0) + ∆t ẋ(0) +
(∆t)2

2!
ẍ(0) +

(∆t)3

3!
x(3)(0) + · · · . (14.17)

Comparing to (14.16), it can be seen that the Euler method just uses the first
term of the Taylor series, which is an exact representation (if x̃ is analytic). Thus,
the neglected terms reflect the approximation error. If x(t) is roughly linear, then
the error may be small; however, if ẋ(t) or higher order derivatives change quickly,
then poor approximations are obtained.

Runge-Kutta methods are based on using higher order terms of the Taylor
series expansion. One of the most widely used and efficient numerical integration
methods is the fourth-order Runge-Kutta method. It is simple to implement and
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yields good numerical behavior in most applications. Also, it is generally recom-
mended over Euler integration. The technique can be derived by performing a
Taylor series expansion at x(1

2
∆t). This state itself is estimated in the approxi-

mation process.
The fourth-order Runge-Kutta integration method is

x(∆t) ≈ x(0) +
∆t

6
(w1 + 2w2 + 2w3 + w4), (14.18)

in which

w1 = f(x(0), u(0))

w2 = f(x(0) + 1
2
∆t w1, u(

1
2
∆t))

w3 = f(x(0) + 1
2
∆t w2, u(

1
2
∆t))

w4 = f(x(0) + ∆t w3, u(∆t)).

(14.19)

Although this is more expensive than Euler integration, the improved accuracy is
usually worthwhile in practice. Note that the action is needed at three different
times: 0, 1

2
∆t, and ∆t. If the action is constant over [0,∆t), then the same value

is used at all three times.
The approximation error depends on how quickly higher order derivatives of

x̃ vary over time. This can be expressed using the remaining terms of the Taylor
series. In practice, it may be advantageous to adapt ∆t over successive iterations
of Runge-Kutta integration. In [247], for example, it is suggested that ∆t is scaled
by (∆t/∆x)1/5, in which ∆x = ‖x(∆t)− x(0)‖, the Euclidean distance in Rn.

Multistep methods Runge-Kutta methods represent a popular trade-off be-
tween simplicity and efficiency. However, by focusing on the integration problem
more carefully, it is often possible to improve efficiency further. The Euler and
Runge-Kutta methods are often referred to as single-step methods. There exist
multi-step methods, which rely on the fact that a sequence of integrations will be
performed, in a manner analogous to incremental collision detection in Section
5.3.3. The key issues are ensuring that the methods properly initialize, ensuring
numerical stability over time, and estimating error to adaptively adjust the step
size. Many books on numerical analysis cover multi-step methods [51, 440, 863].
One of the most popular families is the Adams methods.

Multistep methods require more investment to understand and implement.
For a particular application, the decision to pursue this route should be based on
the relative costs of planning, collision detection, and numerical integration. If
integration tends to dominate and efficiency is critical, then multi-step methods
could improve running times dramatically over Runge-Kutta methods.

Black-box simulators For some problems, a state transition equation might
not be available; however, it is still possible to compute future states given a
current state and an action trajectory. This might occur, for example, in a complex
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software system that simulates the dynamics of a automobile or a collection of parts
that bounce around on a table. In computer graphics applications, simulations may
arise from motion capture data. Some simulators may even work internally with
implicit differential constraints of the form gi(x, ẋ, u) = 0, instead of ẋ = f(x, u).
In such situations, many sampling-based planners can be applied because they
rely only on the existence of the system simulator. The planning algorithm is
thus shielded from the particular details of how the system is represented and
integrated.

Reverse-time system simulation Some planning algorithms require integra-
tion in the reverse-time direction. For some given x(0) and action trajectory that
runs from −∆t to 0, the backward system simulator computes a state trajectory,
x̃ : [−t, 0] → X, which when integrated from −∆t to 0 under the application of
ũt yields x(0). This may seem like an inverse control problem [856] or a BVP as
shown in Figure 14.10; however, it is much simpler. Determining the action trajec-
tory for given initial and goal states is more complicated; however, in reverse-time
integration, the action trajectory and final state are given, and the initial state
does not need to be fixed.

The reverse-time version of (14.14) is

x(−∆t) = x(0) +

∫ −∆t

0

f(x(t), u(t))dt = x(0) +

∫ ∆t

0

−f(x(t), u(t))dt, (14.20)

which relies on the fact that ẋ = f(x, u) is time-invariant. Thus, reverse-time
integration is obtained by simply negating the state transition equation. The Euler
and Runge-Kutta methods can then be applied in the usual way to −f(x(t), u(t)).

14.3.3 Local Planning

The methods of Chapter 5 were based on the existence of a local planning method
(LPM) that is simple and efficient. This represented an important part of both the
incremental sampling and searching framework of Section 5.4 and the sampling-
based roadmap framework of Section 5.6. In the absence of obstacles and differ-
ential constraints, it is trivial to define an LPM that connects two configurations.
They can, for example, be connected using the shortest path (geodesic) in C. The
sampling-based roadmap approach from Section 5.6 relies on this simple LPM.

In the presence of differential constraints, the problem of constructing an LPM
that connects two configurations or states is considerably more challenging. Recall
from Section 14.1 that this is the classical BVP, which is difficult to solve for most
systems. There are two main alternatives to handle this difficulty in a sampling-
based planning algorithm:

1. Design the sampling scheme, which may include careful selection of motion
primitives, so that the BVP can be trivially solved.
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Two-Point
Boundary-Value
Solver

ũt
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Figure 14.10: Some methods in Chapter 15 can solve two-point boundary value
problems in the absence of Xobs. This is difficult to obtain for most systems, but
it is more powerful than the system simulator. It is very valuable, for example, in
making a sampling-based roadmap that satisfies differential constraints.

2. Design the planning algorithm so that as few as possible BVPs need to be
solved. The LPM in this case does not specify precise goal states that must
be reached.

Under the first alternative, the BVP solver can be considered as a black box, as
shown in Figure 14.10, that efficiently connects xI to xG in the absence of obstacles.
In the case of the Piano Mover’s Problem, this was obtained by moving along the
shortest path in C. For many of the wheeled vehicle systems from Section 13.1.2,
steering methods exist that could serve as an efficient BVP solver; see Section 15.5.
Efficient techniques also exist for linear systems and are covered in Section 15.2.2.

If the BVP is efficiently solved, then virtually any sampling-based planning
algorithm from Chapter 5 can be adapted to the case of differential constraints.
This is achieved by using the module in Figure 14.10 as the LPM. For example, a
sampling-based roadmap can use the computed solution in the place of the shortest
path through C. If the BVP solver is not efficient enough, then this approach
becomes impractical because it must typically be used thousands of times to build
a roadmap. The existence of an efficient module as shown in Figure 14.10 magically
eliminates most of the complications associated with planning under differential
constraints. The only remaining concern is that the solutions provided by the BVP
solver could be quite long in comparison to the shortest path in the absence of
differential constraints (for example, how far must the Dubins car travel to move
slightly backward?).

Under the second alternative, it is assumed that solving the BVP is very costly.
The planning method in this case should avoid solving BVPs whenever possible.
Some planning algorithms may only require an LPM that approximately reaches
intermediate goal states, which is simpler for some systems. Other planning algo-
rithms may not require the LPM to make any kind of connection. The LPM may
return a motion primitive that appears to make some progress in the search but
is not designed to connect to a prescribed state. This usually involves incremental
planning methods, which are covered in Section 14.4 and extends the methods of
Sections 5.4 and 5.5 to handle differential constraints.
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14.3.4 General Framework Under Differential Constraints

The framework presented here is a direct extension of the sampling and searching
framework from Section 5.4.1 and includes the extension of Section 5.5 to allow
the selection of any point in the swath of the search graph. This replaces the
vertex selection method (VSM) by a swath-point selection method (SSM). The
framework also naturally extends the discrete search framework of Section 2.2.4.
The components are are follows:

1. Initialization: Let G(V,E) represent an undirected search graph, for which
the vertex set V contains a vertex for xI and possibly other states in Xfree,
and the edge set E is empty. The graph can be interpreted as a topological
graph with a swath S(G).

2. Swath-point Selection Method (SSM): Choose a vertex xcur ∈ S(G) for
expansion.

3. Local Planning Method (LPM):Generate a motion primitive ũp : [0, tF ]→
Xfree such that u(0) = xcur and u(tF ) = xr for some xr ∈ Xfree, which may
or may not be a vertex in G. Using the system simulator, a collision detec-
tion algorithm, and by testing the phase constraints, ũp must be verified to
be violation-free. If this step fails, then go to Step 2.

4. Insert an Edge in the Graph: Insert ũp into E. Upon integration, ũp

yields a state trajectory from xcur to xr. If xr is not already in V , it is added.
If xcur lies in the interior of an edge trajectory for some e ∈ E, then e is split
by the introduction of a new vertex at xcur.

5. Check for a Solution: Determine whether G encodes a solution path. In
some applications, a small gap in the state trajectory may be tolerated.

6. Return to Step 2: Iterate unless a solution has been found or some ter-
mination condition is satisfied. In the latter case, the algorithm reports
failure.

The general framework may be applied in the same ways as in Section 5.4.1
to obtain unidirectional, bidirectional, and multidirectional searches. The issues
from the Piano Mover’s Problem extend to motion planning under differential
constraints. For example, bug traps cause the same difficulties, and as the number
of trees increases, it becomes difficult to coordinate the search.

The main new complication is due to BVPs. See Figure 14.11. Recall from
Section 14.1.1 that for most systems it is important to reduce the number of BVPs
that must be solved during planning as much as possible. Assume that connecting
precisely to a prescribed state is difficult. Figure 14.11a shows the best situation,
in which forward, unidirectional search is used to enter a large goal region. In
this case, no BVPs need to be solved. As the goal region is reduced, the problem
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Figure 14.11: (a) Forward, unidirectional search for which the BVP is avoided.
(b) Reaching the goal precisely causes a BVP. (c) Backward, unidirectional search
also causes a BVP. (d) For bidirectional search, the BVP arises when connecting
the trees.

becomes more challenging. Figure 14.11b shows the limiting case in which XG is
a point {xG}. This requires the planning algorithm to solve at least one BVP.

Figure 14.11c shows the case of backward, unidirectional search. This has the
effect of moving the BVP to xI . Since xI is precisely given (there is no “initial
region”), the BVP cannot be avoided as in the forward case. If an algorithm
produces a solution ũ for which x(0) is very close to xI , and if XG is large, then it
may be possible to salvage the solution. The system simulator can be applied to ũ
from xI instead of x(0). It is known that x̃(x(0), ũ) is violation-free, and x̃(xI , ũ)
may travel close to x̃(x(0), ũ) at all times. This requires f to vary only a small
amount with respect to changes in x (this would be implied by a small Lipschitz
constant) and also for ‖xI − x(0)‖ to be small. One problem is that the difference
between points on the two trajectories usually increases as time increases. If it is
verified by the system simulator that x̃(xI , ũ) is violation-free and the final state
still lies in XG, then a solution can be declared.

For bidirectional search, a BVP must be solved somewhere in the middle of a
trajectory, as shown in Figure 14.11d. This complicates the problem of determining
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whether the two trees can be connected. Once again, if the goal region is large,
it may be possible remove the gap in the middle of the trajectory by moving
the starting state of the trajectory produced by the backward tree. Let ũ1 and
ũ2 denote the action trajectories produced by the forward and backward trees,
respectively. Suppose that their termination times are t1 and t2, respectively. The
action trajectories can be concatenated to yield a function ũ : [0, t1 + t2]→ U by
shifting the domain of ũ2 from [0, t2] to [t1, t1 + t2]. If t ≤ t1, then u(t) = u1(t);
otherwise, u(t) = u2(t − t1). If there is a gap, the new state trajectory x̃(xI , ũ)
must be checked using the system simulator to determine whether it is violation-
free and terminates in XG. Multi-directional search becomes even more difficult
because more BVPs are created. It is possible in principle to extend the ideas
above to concatenate a sequence of action trajectories, which tries to remove all
of the gaps.

Consider the relationship between the search graph and reachability graphs.
In the case of unidirectional search, the search graph is always a subset of a
reachability graph (assuming perfect precision and no numerical integration error).
In the forward case, the reachability graph starts at xI , and in the backward case it
starts at xG. In the case of bidirectional search, there are two reachability graphs.
It might be the case that vertices from the two coincide, which is another way
that the BVP can be avoided. Such cases are unfortunately rare, unless xI and
xG are intentionally chosen to cause this. For example, the precise location of xG

may be chosen because it is known to be a vertex of the reachability graph from
xI . For most systems, it is difficult to force this behavior. Thus, in general, BVPs
arise because the reachability graphs do not have common vertices. In the case of
multi-directional search, numerous reachability graphs are being explored, none of
which may have vertices that coincide with vertices of others.

14.4 Incremental Sampling and Searching Meth-

ods

The general framework of Section 14.3.4 will now be specialized to obtain three
important methods for planning under differential constraints.

14.4.1 Searching on a Lattice

This section follows in the same spirit as Section 5.4.2, which adapted grid search
techniques to motion planning. The difficulty in the current setting is to choose a
discretization that leads to a lattice that can be searched using any of the search
techniques of Section 2.2. The section is inspired mainly by kinodynamic planning
work [288, 290, 441].
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Figure 14.12: The reachability graph will be obtained by switching between these
vector fields at every ∆t. The middle one produces horizontal phase trajectories,
and the others produce parabolic curves.

14.4.1.1 A double-integrator lattice

First consider the double integrator from Example 13.3. Let C = Cfree = R and
q̈ = u. This models the motion of a free-floating particle in R, as described in
Section 13.3.2. The phase space is X = R2, and x = (q, q̇). Let U = [−1, 1]. The
coming ideas can be easily generalized to allow any acceleration bound amax > 0
by letting U = [−amax, amax]; however, amax = 1 will be chosen to simplify the
presentation.

The differential equation q̈ = u can be integrated once to yield

q̇(t) = q̇(0) + ut, (14.21)

in which q̇(0) is an initial speed. Upon integration of (14.21), the position is
obtained as

q(t) = q(0) + q̇(0) t+ 1
2
ut2, (14.22)

which uses two initial conditions, q(0) and q̇(0).
A discrete-time model exists for which the reachability graph is trapped on a

lattice. This is obtained by letting Ud = {−1, 0, 1} and ∆t be any positive real
number. The vector fields over X that correspond to the cases of u = −1, u = 0,
and u = 1 are shown in Figure 14.12. Switching between these fields at every ∆t
and integrating yields the reachability graph shown in Figure 14.13.

This leads to a discrete-time transition equation of the form xk+1 = fd(xk, uk),
in which uk ∈ Ud, and k represents time t = (k− 1)∆t. Any action trajectory can
be specified as an action sequence; for example a six-stage action sequence may be
given by (−1, 1, 0, 0,−1, 1). Start from x1 = x(0) = (q1, q̇1). At any stage k and
for any action sequence, the resulting state xk = (qk, q̇k) can be expressed as

qk = q1 + i1
2
(∆t)2

q̇k = q̇1 + j∆t,
(14.23)
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q̇

q

Figure 14.13: The reachability graph from the origin is shown after three stages
(the true state trajectories are actually parabolic arcs when acceleration or decel-
eration occurs). Note that a lattice is obtained, but the distance traveled in one
stage increases as |q̇| increases.

in which i, j are integers that can be computed from the action sequence. Thus,
any action sequence leads to a state that can be expressed using integer coordinates
(i, j) in the plane. Starting at x1 = (0, 0), this forms the lattice of points shown
in Figure 14.13. The lattice is slanted (with slope 1) because changing speed
requires some motion. If infinite acceleration were allowed, then q̇ could be changed
instantaneously, which corresponds to moving vertically inX. As seen in (14.21), q̇
changes linearly over time. If q 6= 0, then the configuration changes quadratically.
If u = 0, then it changes linearly, except when q̇ = 0; in this case, no motion
occurs.

The neighborhood structure is not the same as those in Section 5.4.2 because
of drift. For u = 0, imagine having a stack of horizontal conveyor belts that carry
points to the right if they are above the q-axis, and to the left if they are below
it (see Figure 14.12b). The speed of the conveyor belt is given by q̇. If u = 0,
the distance traveled along q is q̇∆t. This causes horizontal motion to the right
in the phase plane if q̇ > 0 and horizontal motion to the left if q̇ < 0. Observe in
Figure 14.13 that larger motions result as |q̇| increases. If q̇ = 0, then no horizontal
motion can occur. If q 6= 0, then the q̇ coordinate changes by ±1

2
u(∆t)2. This

slowing down or speeding up also affects the position along q.

For most realistic problems, there is an upper bound on speed. Let vmax > 0
be a positive constant and assume that |q̇| ≤ vmax. Furthermore, assume that
C is bounded (all values of q ∈ C are contained in an interval of R). Since the
reachability graph is a lattice and the states are now confined to a bounded subset
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(a) Backward reachable set from xG (b) Forward reachable set from xI

Figure 14.14: The initial and goal states can be connected to lattice points that
call within cones in X that represent time-limited reachable sets.

of R2, the number of vertices in the reachability graph is finite. For any fixed
∆t, the lattice can be searched using any of the algorithms of Section 2.2. The
search starts on a reachability graph for which the initial vertex is xI . Trajecto-
ries that are approximately time-optimal can be obtained by using breadth-first
search (Dijkstra’s algorithm could alternatively be used, but it is more expensive).
Resolution completeness can be obtained by reducing ∆t by a constant factor each
time the search fails to find a solution. As mentioned in Section 5.4.2, it is not
required to construct an entire grid resolution at once. Samples can be gradually
added, and the connectivity can be updated efficiently using the union-find algo-
rithm [243, 823]. A rigorous approximation algorithm framework will be presented
shortly, which indicates how close the solution is to optimal, expressed in terms of
input parameters to the algorithm.

Recall the problem of connecting to grid points, which was illustrated in Figure
5.14b. If the goal region XG contains lattice points, then exact arrival at the goal
occurs. If it does not contain lattice points, as in the common case of XG being
a single point, then some additional work is needed to connect a goal state to a
nearby lattice point. This actually corresponds to a BVP, but it is easy to solve
for the double integrator. The set of states that can be reached from some state
xG within time ∆t lie within a cone, as shown in Figure 14.14a. Lattice points
that fall into the cone can be easily connected to xG by applying a constant action
in U . Likewise, xI does not even have to coincide with a lattice point. Thus, it is
straightforward to connect xI to a lattice point, obtain a trajectory that arrives
at a lattice point near xG, and then connect it exactly to xG.

14.4.1.2 Extensions and other considerations

Alternative lattices for the double integrator Many alternative lattices can
be constructed over X. Different discretizations of U and time can be used. Great
flexibility is allowed if feasibility is the only concern, as opposed to optimality.
Since C = R, it is difficult to define an obstacle avoidance problem; however, the
concepts will be soon generalized to higher dimensions. In this case, finding a
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feasible trajectory that connects from some initial state to a goal state may be
the main concern. Note, however, that if xI and xG are states with zero velocity,
then the state could hover around close to the q-axis, and the speeds will be so
slow that momentum is insignificant. This provides some incentive for at least
reducing the travel time as much as possible, even if the final result is not optimal.
Alternatively, the initial and goal states may not have zero velocity, in which case,
any feasible solution may be desired. For example, suppose the goal is to topple a
sports utility vehicle (SUV) as part of safety analysis.

To get a feeling for how to construct lattices, recall again the analogy to con-
veyor belts. A lattice can be designed by placing horizontal rows of sample points
at various values of q̇. These could, for example, be evenly spaced in the q̇ direc-
tion as in Figure 14.13. Imagine the state lies on a conveyor belt. If desired, a
move can be made to any other conveyor belt, say at q̇′, by applying a nonzero
action for some specific amount of time. If q̇′ > q̇, then u > 0; otherwise, u < 0. If
the action is constant, then after time |q̇ − q̇′|/u has passed, the state will arrive
at q̇′. Upon arrival, the position q on the conveyor belt might not coincide with a
sample point. This is no problem because the action u = 0 can be applied until the
state drifts to the next sample point. An alternative is to choose an action from
U that drives directly to a lattice point within its forward, time-limited reachable
set. Recall Figure 14.14; the cone can be placed on a lattice point to locate other
lattice points that can be reached by application of a constant action in U over
some time interval.

Recall from Figure 14.13 that longer distances are traveled over time ∆t as |q̇|
increases. This may be undesirable behavior in practice because the resolution
is essentially much poorer at higher speeds. This can be compensated for by
placing the conveyor belts closer together as |q̇| increases. As the speed increases,
a shorter time interval is needed to change belts, and the distance traveled can be
held roughly the same for all levels. This corresponds to the intuition that faster
response times are needed at higher speeds.

A multi-resolution version can also be made [816]. The simple problem con-
sidered so far can actually be solved combinatorially, without any approximation
error [747]; however, the lattice-based approach was covered because it can be
extended to much harder problems, as will be explained next.

Multiple, independent double integrators Now consider generalizing to a
vector of n double integrators. In this case, C = Rn and each q ∈ C is an n-
dimensional vector. There are n action variables and n double integrators of the
form q̈i = ui. The action space for each variable is Ui = [−1, 1] (once again, any
acceleration bound can be used). The phase space X is R2n, and each point is x =
(q1, . . . , qn, q̇1, . . . , q̇n). The ith double integrator produces two scalar equations of
the phase transition equation: ẋi = xn+i and ẋn+i = ui.

Even though there are n double integrators, they are decoupled in the state
transition equation. The phase of one integrator does not depend on the phase of
another. Therefore, the ideas expressed so far can be extended in a straightforward
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way to obtain a lattice over R2n. Each action is an n-dimensional vector u. Each Ui

is discretized to yield values −1, 0, and 1. There are 3n edges emanating from any
lattice point for which q̇i 6= 0 for all i. For any double integrator for which q̇i = 0,
there are only two choices because ui = 0 produces no motion. The projection of
the reachability graph down to (xi, xn+i) for any i from 1 to n looks exactly like
Figure 14.13 and characterizes the behavior of the ith integrator.

The standard search algorithms can be applied to the lattice over R2n. Breadth-
first search once again yields solutions that are approximately time-optimal. Res-
olution completeness can be obtained again by bounding X and allowing ∆t to
converge to zero. Now that there are more dimensions, a complicated obstacle
region Xobs can be removed from X. The traversal of each edge then requires
collision detection along each edge of the graph. Note that the state trajectories
are linear or parabolic arcs. Numerical integration is not needed because (14.22)
already gives the closed-form expression for the state trajectory.

Unconstrained mechanical systems A lattice can even be obtained for the
general case of a fully actuated mechanical system, which for example includes
most robot arms. Recall from (13.4) that any system in the form q̇ = f(q, u) can
alternatively be expressed as q̇ = u, if U(q) is defined as the image of f for a fixed
q. The main purpose of using f is to make it easy to specify a fixed action space
U that maps differently into the tangent space for each q ∈ C.

A similar observation can be made regarding equations of the form q̈ = h(q, q̇, u),
in which u ∈ U and U is an open subset of Rn. Recall that this form was obtained
for general unconstrained mechanical systems in Sections 13.3 and 13.4. For ex-
ample, (13.148) expresses the dynamics of open-chain robot arms. Such equations
can be expressed as q̈ = u′ by directly specifying the set of allowable accelerations.
Each u will map to a new action u′ in an action space given by

U ′(q, q̇) = {q̈ ∈ Rn | ∃u ∈ U such that q̈ = h(q, q̇, u)} (14.24)

for each q ∈ C and q̇ ∈ Rn.
Each u′ ∈ U ′(q, q̇) directly expresses an acceleration vector in Rn. Therefore,

using u′ ∈ U(q, q̇), the original equation expressed using h can be now written as
q̈ = u′. In its new form, this appears just like the multiple, independent double
integrators. The main differences are

1. The set U ′(q, q̇) may describe a complicated region in Rn, whereas U in the
case of the true double integrators was a cube centered at the origin.

2. The set U ′(q, q̇) varies with respect to q and q̇. Special concern must be
given for this variation over the time sampling interval ∆t. In the case of
the true double integrators, U was fixed.

The first difference is handled by performing grid sampling over Rn and making
an edge in the reachability graph for every grid point that falls into U ′(q, q̇); see
Figure 14.15a. The grid resolution can be improved along with ∆t to obtain
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Figure 14.15: (a) The set, U ′(q, q̇), of new actions and grid-based sampling. (b)
Reducing the set by some safety margin to account for its variation over time.

resolution completeness. To address the second problem, think of U ′(q(t), q̇(t))
as a shape in Rn that moves over time. Choosing u′ close to the boundary of
U ′(q(t), q̇(t)) is dangerous because as t increases, u′ may fall outside of the new
action set. It is often possible to obtain bounds on how quickly the boundary of
U ′(q, q̇) can vary over time (this can be determined, for example, by differentiating
h with respect to q and q̇). Based on the bound, a thin layer near the boundary
of U ′(q, q̇) can be removed from consideration to ensure that all attempted actions
remain in U ′(q(t), q̇(t)) during the whole interval ∆t. See Figure 14.15b.

These ideas were applied to extend the approximation algorithm framework to
the case of open-chain robot arms, for which h is given by (13.148). Suppose that
U is an axis-aligned rectangle, which is often the case for manipulators because
the bounds for each ui correspond to torque limits for each motor. If q and q̇
are fixed, then (13.140) applies a linear transformation to obtain q̈ from u. The
rectangle is generally sheared into a parallelepiped (a n-dimensional extension of
a parallelogram). Recall such transformations from Section 3.5 or linear algebra.

Approximation algorithm framework The lattices developed in this section
were introduced in [290] for analyzing the kinodynamic planning problem in the
rigorous approximation algorithm framework for NP-hard problems [765]. Suppose
that there are two or three independent double integrators. The analysis shows
that the computed solutions are approximately optimal in the following sense. Let
c0 and c1 be two positive constants that define a function

δ(c0, c1)(q̇) = c0 + c1‖q̇‖. (14.25)

Let tF denote the time at which the termination action is applied. A state tra-
jectory is called δ(c0, c1)-safe if for all t ∈ [0, tF ], the ball of radius δ(c0, c1)(q̇)
that is centered at q(t) does not cause collisions with obstacles in W . Note that
the ball radius grows linearly as the speed increases. The robot can be imagined
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as a disk with a radius determined by speed. Let xI , xG, c0, and c1 be given
(only a point goal region is allowed). Suppose that for a given problem, there
exists a δ(c0, c1)-safe state trajectory (resulting from integrating any ũ ∈ U) that
terminates in xG after time topt. It was shown that by choosing the appropriate
∆t (given by a formula in [290]), applying breadth-first search to the reachability
lattice will find a (1− ǫ)δ(c0, c1)-safe trajectory that takes time at most (1+ ǫ)topt,
and approximately connects xI to xG (which means that the closeness in X de-
pends on ǫ). Furthermore, the running time of the algorithm is polynomial in 1/ǫ
and the number of primitives used to define polygonal obstacles.5 One of the key
steps in the analysis is to show that any state trajectory can be closely tracked
using only actions from Ud and keeping them constant over ∆t. One important
aspect is that it does not necessarily imply that the computed solution is close to
the true optimum, as it travels through X (only the execution times are close).
Thus, the algorithm may give a solution from a different homotopy class from the
one that contains the true optimal trajectory. The analysis was extended to the
general case of open-chain robot arms in [288, 441].

Backward and bidirectional versions There is a perfect symmetry to the
concepts presented so far in this section. A reachability lattice similar to the one
in Figure 14.13 can be obtained by integrating backward in time. This indicates
action sequences and associated initial states from which a fixed state can be
reached. Note that applying the ideas in the reverse direction does not require
the system to be symmetric. Given that the graphs exist in both directions,
bidirectional search can be performed. By using the forward and backward time-
limited reachability cones, the initial and goal states can be connected to a common
lattice, which is started, for example, at the origin.

Underactuated and nonholonomic systems Many interesting systems can-
not be expressed in the form q̈ = h(q, q̇, u) with n independent action variables
because of underactuation or other constraints. For example, the models in Section
13.1.2 are underactuated and nonholonomic. In this case, it is not straightforward
to convert the equations into a vector of double integrators because the dimension
of U(q, q̇) is less than n, the dimension of C. This makes it impossible to use
grid-based sampling of U(q, q̇). Nevertheless, it is still possible in many cases to
discretize the system in a clever way to obtain a lattice. If this can be obtained,
then a straightforward resolution-complete approach based on classical search al-
gorithms can be developed. If X is bounded (or a bounded region is obtained after
applying the phase constraints), then the search is performed on a finite graph. If
failure occurs, then the resolution can be improved in the usual way to eventually
obtain resolution completeness. As stated in Section 14.2.2, obtaining such a lat-

5One technical point: It is actually only pseudopolynomial [765] in amax, vmax, c0, c1, and
the width of the bounding cube in W. This means that the running time is polynomial if
the representations of these parameters are treated as having constant size; however, it is not
polynomial in the actual number of bits needed to truly represent them.
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tice is possible for a large family of nonholonomic systems [762]. Next, a method
is presented for handling reachability graphs that are not lattices.

14.4.2 Incorporating State Space Discretization

If the reachability graph is not a lattice, which is typically the case with underac-
tuated and nonholonomic systems, then state space discretization can be used to
force it to behave like a lattice. If there are no differential constraints, then paths
can be easily forced to travel along a lattice, as in the methods of Section 7.7.1.
Under differential constraints, the state cannot be forced, for example, to follow
a staircase path. Instead of sampling X and forcing trajectories to visit specific
points, X can be partitioned into small cells, within which no more than one ver-
tex is allowed in the search graph. This prevents a systematic search algorithm
from running forever if the search graph has an infinite number of vertices in some
bounded region. For example, with the Dubins car, if u is fixed to an integer, an
infinite number of vertices on a circle is obtained, as mentioned in Section 14.2.2.
The ideas in this section are inspired mainly by the Barraquand-Latombe dynamic
programming method [73], which has been mainly applied to the models in Section
13.1.2. In the current presentation, however, the approach is substantially gener-
alized. Here, optimality is not even necessarily required (but can be imposed, if
desired).

Decomposing X into cells At the outset, X is decomposed into a collection of
cells without considering collision detection. Suppose that X is an n-dimensional
rectangular subset of Rn. If X is more generally a smooth manifold, then the
rectangular subset can be defined in a coordinate neighborhood. If desired, identi-
fications can be used to respect the topology ofX; however, coordinate changes are
technically needed at the boundaries to properly express velocities (recall Section
8.3).

The most common cell decomposition is obtained by splittingX into n-dimensional
cubes of equal size by quantizing each coordinate. This will be called a cubical par-
tition. Assume in general thatX is partitioned into a collection D of n-dimensional
cells. Let D ∈ D denote a cell, which is a subset of X. It is assumed here that all
cells have dimension n. In the case of cubes, this means that points on common
boundaries between cubes are declared to belong to only one neighboring cube
(thus, the cells may be open, closed, or neither).

Note that X is partitioned into cells, and not Xfree, as might be expected
from the methods in Chapter 6. This means that collision detection and other
constraints on X are ignored when defining D. The cells are defined in advance,
just as grids were declared in Section 5.4.2. In the case of a cubical partition, the
cells are immediately known upon quantization of each coordinate axis.

Searching The algorithm fits directly into the framework of Section 14.3.4. A
search graph is constructed incrementally from xI by applying any systematic
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(a) (b)

Figure 14.16: (a) The first four stages of a dense reachability graph for the Dubins
car. (b) One possible search graph, obtained by allowing at most one vertex per
cell. Many branches are pruned away. In this simple example, there are no cell
divisions along the θ-axis.

search algorithm. It is assumed that the system has been discretized in some way.
Most often, the discrete-time model of Section 14.2.2 is used, which results in a
fixed ∆t and a finite set Ud of actions.

In the basic search algorithms of Section 2.2.1, it is important to keep track of
which vertices have been explored. Instead of applying this idea to vertices, it is
applied here to cells. A cell D is called visited if the search graph that has been
constructed so far contains a vertex in D; otherwise, D is called unvisited. Initially,
only the cell that contains xI is marked as visited. All others are initialized to
unvisited. These labels are used to prune the reachability graph during the search,
as shown in Figure 14.16.

The basic algorithm outline is shown in Figure 14.17. Let Q represent a priority
queue in which the elements are vertices of the search graph. If optimization of a
cost functional is required, thenQmay be sorted by the cost accumulated along the
path constructed so far from xI to x. This cost can be assigned in many different
ways. It could simply represent the time (number of ∆t steps), or it could count the
number of times the action has changed. As the algorithm explores, new candidate
vertices are encountered. They are only saved in the search graph and placed into
Q if they lie in a cell marked unvisited and are violation-free. Upon encountering
such a cell, it becomes marked as visited. The reached function generates a set
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CELL-BASED SEARCH(xI , xG)
1 Q.insert(xI);
2 G.init(xI);
3 while Q 6= ∅ and xG is unvisited
4 xcur → Q.pop();
5 for each (ũt, x) ∈ reached(xcur)
6 if x is unvisited
7 Q.insert(x);
8 G.add vertex(x);
9 G.add edge(ũt);
10 Mark cell that contains x as visited;
11 Return G;

Figure 14.17: Searching by using a cell decomposition of X.

of violation-free trajectory segments. Under the discrete-time model, this means
applying each u ∈ Ud over time ∆t and reporting only those states reached without
violating the constraints (including collision avoidance).

As usual, the BVP issue may arise if XG is small relative to the cell size. If
XG is large enough to include entire cells, then this issue is avoided. If xG is a
single point, then it may only be possible to approximately reach xG. Therefore,
the algorithm must accept reaching xG to within a specified tolerance. This can
be modeled by defining XG to be larger; therefore, tolerance is not explicitly
mentioned.

Maintaining the cells There are several alternatives for maintaining the cells.
The main operation that needs to be performed efficiently is point location [264]:
determine which cell contains a given state. The original method in [73] preallo-
cates an n-dimensional array. The collision-checking is even performed in advance.
Any cell that contains at least one point in Xobs can be labeled as occupied. This
allows cells that contain collision configurations to be avoided without having to
call the collision detection module. For a fixed dimension, this scheme finds the
correct cell and updates the labels in constant time. Unfortunately, the space
requirement is exponential in dimension.

An alternative is to use a hash table to maintain the collection of cells that are
labeled as visited. This may be particularly valuable if optimality is not important
and if it is expected that solutions will be found before most of the cells are reached.
The point location problem can be solved efficiently without explicitly storing a
multi-dimensional array.

Suppose that the cubical decomposition is not necessarily used. One general
approach is to define D as the Voronoi regions of a collection P of m samples
{p1, . . . , pm} in X. The “name” of each cell corresponds uniquely to a sample in P .
The cell that contains some x ∈ X is defined as the nearest sample in P , using some
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predetermined metric on X. As a special case, the cubical decomposition defines
the cells based on a Sukharev grid (recall Figure 5.5a). If the dimension of X is
not too high, then efficient nearest-neighbor schemes can be used to determine the
appropriate cell in near-logarithmic time in the number of points in P (in practice,
Kd-trees, mentioned in Section 5.5.2, should perform well). For maintaining a
cubical decomposition, this approach would be cumbersome; however, it works for
any sample set P . If no solution is found for a given P , then the partition could
be improved by adding more samples. This allows any dense sequence to be used
to guide the exploration of X while ensuring resolution completeness, which is
discussed next.

Resolution issues One of the main complications in using state discretization
is that there are three spaces over which sampling occurs: time, the action space,
and the state space. Assume the discrete-time model is used. If obtaining optimal
solutions is important, then very small cells should be used (e.g., 50 to 100 per
axis). This limits its application to state spaces of a few dimensions. The time
interval ∆t should also be made small, but if it is too small relative to the cell size,
then it may be impossible to leave a cell. If only feasibility is the only requirement,
then larger cells may be used, and ∆t must be appropriately increased. A course
quantization of U may cause solutions to be missed, particularly if ∆t is large. As
∆t decreases, the number of samples in Ud becomes less important.

To obtain resolution completeness, the sampling should be improved each time
the search fails. Each time that the search is started, the sampling dispersion for
at least one of the three spaces should be decreased. The possibilities are 1) the
time interval ∆t may be reduced, 2) more actions may be added to Ud, or 3) more
points may be added to P to reduce the cell size. If the dispersion approaches zero
for all three spaces, and if XG contains an open subset of Xfree, then resolution
completeness is obtained. If XG is only a point, then solutions that come within
some ǫ > 0 must be tolerated.

Recall that resolution completeness assumes that f has bounded derivatives
or at least satisfies a Lipschitz condition (14.11). The actual rate of convergence
is mainly affected by three factors: 1) the rate at which f varies with respect
to changes in u and x (characterized by Lipschitz constants), 2) the required
traversal of narrow regions in Xfree, and 3) the controllability of the system. The
last condition will be studied further for nonholonomic systems in Section 15.4.
For a concrete example, consider making a U-turn with a Dubins car that has a
very large turning radius, as shown in Figure 14.18. A precise turn may be required
to turn around, and this may depend on an action that was chosen many stages
earlier. The Dubins car model does not allow zig-zagging (e.g., parallel parking)
maneuvers to make local corrections to the configuration.

Backward and bidirectional versions As usual, both backward and bidi-
rectional versions of this approach can be made. If the XG is large (or the goal
tolerance is large) and the BVP is costly to solve, then the backward version seems
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Figure 14.18: (a) The Dubins car is able to turn around if it turns left as sharply as
possible. (b) Unfortunately, the required vertex is pruned because one cell along
the required trajectory already contains a vertex. This illustrates how missing a
possible action can cause serious problems many stages later.

less desirable if the BVP is hard. The forward direction is preferred because the
BVP can be avoided altogether.

For a bidirectional algorithm, the same collection D of cells can be used for
both trees. The problem could be considered solved if the same cell is reached
by both trees; however, one must be careful to still ensure that the remaining
BVP can be solved. It must be possible to find an action trajectory segment that
connects a vertex from the initial-based tree to a vertex of the goal-based tree.
Alternatively, connections made to within a tolerance may be acceptable.

14.4.3 RDT-Based Methods

The rapidly exploring dense tree (RDT) family of methods, which includes the
RRT, avoids maintaining a lattice altogether. RDTs were originally developed for
handling differential constraints, even though most of their practical application
has been to the Piano Mover’s Problem. This section extends the ideas of Section
5.5 from C to X and incorporates differential constraints. The methods covered so
far in Section 14.4 produce approximately optimal solutions if the graph is searched
using dynamic programming and the resolution is high enough. By contrast, RDTs
are aimed at returning only feasible trajectories, even as the resolution improves.
They are often successful at producing a solution trajectory with relatively less
sampling. This performance gain is enabled in part by the lack of concern for
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SIMPLE RDT WITH DIFFERENTIAL CONSTRAINTS(x0)
1 G.init(x0);
2 for i = 1 to k do
3 xn ← nearest(S(G), α(i));
4 (ũp, xr)← local planner(xn, α(i));
5 G.add vertex(xr);
6 G.add edge(ũp);

Figure 14.19: Extending the basic RDT algorithm to handle differential con-
straints. In comparison to Figure 5.16, an LPM computes xr, which becomes
the new vertex, instead of α(i). In some applications, line 4 may fail, in which
case lines 5 and 6 are skipped.

Apply some ũ
p

xn

α(i)

Figure 14.20: If the nearest point S lies in the state trajectory segment associated
to an edge, then the edge is split into two, and a new vertex is inserted into G.

optimality.

Let α denote an infinite, dense sequence of samples in X. Let ρ : X × X →
[0,∞] denote a distance function on X, which may or may not be a proper metric.
The distance function may not be symmetric, in which case ρ(x1, x2) represents
the directed distance from x1 to x2.

The RDT is a search graph as considered so far in this section and can hence
be interpreted as a subgraph of the reachability graph under some discretization
model. For simplicity, first assume that the discrete-time model of Section 14.2.2
is used, which leads to a finite action set Ud and a fixed time interval ∆t. The
set Up of motion primitives is all action trajectories for which some u ∈ Ud is held
constant from time 0 to ∆t. The more general case will be handled at the end of
this section.

Paralleling Section 5.5.1, the RDT will first be defined in the absence of ob-
stacles. Hence, let Xfree = X. The construction algorithm is defined in Figure
14.19; it may be helpful to compare it to Figure 5.16, which was introduced on
C for the Piano Mover’s Problem. The RDT, denoted by G, is initialized with a
single vertex at some x0 ∈ X. In each iteration, a new edge and vertex are added
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to G. Line 3 uses ρ to choose xn, which is the nearest point to α(i) in the swath
of G. In the RDT algorithm of Section 5.5, each sample of α becomes a vertex.
Due to the BVP and the particular motion primitives in Up, it may be difficult or
impossible to precisely reach α(i). Therefore, line 4 calls an LPM to determine a
primitive ũp ∈ Up that produces a new state xr upon integration from xn. The
result is depicted in Figure 14.20. For the default case in which Up represents the
discrete-time model, the action is chosen by applying all u ∈ U over time ∆t and
selecting the one that minimizes ρ(xr, α(i)). One additional constraint is that if
xn has been chosen in a previous iteration, then ũp must be a motion primitive
that has not been previously tried from xn; otherwise, duplicate edges would result
in G or time would be wasted performing collision checking for reachability graph
edges that are already known to be in collision. The remaining steps add the new
vertex and edge from xn. If xn is contained in the trajectory produced by an edge
e, then e is split as described in Section 5.5.1.

Efficiently finding nearest points The issues of Section 5.5.2 arise again for
RDTs under differential constraints. In fact, the problem is further complicated
because the edges in G are generally curved. This prevents the use of simple
point-segment distance tests. Furthermore, an exact representation of the state
trajectory is usually not known. Instead, it is approximated numerically by the
system simulator. For these reasons, it is best to use the approximate method of
determining the nearest point in the swath, which is a straightforward extension
of the discussion in Section 5.5.2; recall Figure 5.22. Intermediate vertices may be
inserted if the applied motion primitive yields a state trajectory that travels far
in Xfree. If the dimension is low enough (e.g., less than 20), then efficient nearest-
neighbor algorithms (Section 5.5.2) can be used to offset the cost of maintaining
intermediate vertices.

Handling obstacles Now suppose that Xobs 6= ∅. In Section 5.5.1, the RDT
was extended until a stopping configuration qs was reached, just in front of an
obstacle. There are two new complications under differential constraints. The
first is that motion primitives are used. If ∆t is small, then in many cases the
time will expire before the boundary is reached. This can be alleviated by using
a large ∆t and then taking only the violation-free portion of the trajectory. In
this case, the trajectory may even be clipped early to avoid overshooting α(i).
The second complication is due to Xric. If momentum is substantial, then pulling
the tree as close as possible to obstacles will increase the likelihood that the RDT
becomes trapped. Vertices close to obstacles will be selected often because they
have large Voronoi regions, but expansion is not possible. In the case of the Piano
Mover’s Problem, this was much less significant because the tree could easily follow
along the boundary. In most experimental work, it therefore seems best to travel
only part of the way (perhaps half) to the boundary.
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Tree-based planners Planning algorithms can be constructed from RDTs in
the same way as in Section 5.5. Forward, backward, and bidirectional versions
can be made. The main new complication is the familiar BVP that the other
sampling-based methods of this section have also suffered from. If it is expensive
or even impossible to connect nearby states, then the usual complications arise. If
XG contains a sizable open set, then a forward, single-tree planner with a gentle
bias toward the goal could perform well while avoiding the BVP. However, if XG

is a point, then a tolerance must be set on how close the RDT must get to the
goal before it can declare that it has a solution. For systems with drift, the search
time often increases dramatically as this tolerance decreases.

Bidirectional search offers great performance advantages in many cases, but the
BVP exists when attempting connections between the two trees. One possibility is
to set the tolerance very small and then concatenate the two action trajectories, as
described in Section 14.3.4. If it succeeds, then the planning algorithm successfully
terminates. Unfortunately, the performance once again depends greatly on the
tolerance, particularly if the drift is substantial. Recent studies have shown that
using a bidirectional RDT with a large connection tolerance and then closing the
gap by using efficient variational techniques provides dramatic improvement in
performance [198, 576]. Unfortunately, variational techniques are not efficient for
all systems because they must essentially solve the BVP by performing a gradient
descent in the trajectory space; see Section 14.7.

Distance function issues The RDT construction algorithm is heavily influ-
enced by the distance function ρ. This was also true for RDTs applied to the
Piano Mover’s Problem; however, it becomes more critical and challenging to de-
sign a good metric in the presence of differential constraints. For example, the
metric given by Example 5.3 is inappropriate for measuring the distance between
configurations for the Dubins car. A more appropriate metric is to use length of the
shortest path from q to q′ (this length is easy to compute; see Section 15.5). Such
a metric would be more appropriate than the one in Example 5.3 for comparing
the configurations, even for car models that involve dynamics and obstacles.

Although many challenging problems can be solved using weighted Euclidean
metrics [611], dramatic improvements can be obtained by exploiting particular
properties of the system. This problem might seem similar to the choice of a po-
tential function for the randomized potential field planer of Section 5.4.3; however,
since RDTs approach many different samples in α(i), instead of focusing only on
the goal, the performance degradation is generally not as severe as the local mini-
mum problem for a potential field planner. There are many more opportunities to
escape in an RDT. Metrics that would fail miserably as a potential function often
yield good performance in an RDT-based planner.

The ideal distance function, as mentioned in Section 14.3, is to use the optimal
cost-to-go, denoted here as ρ∗. Of course, computing ρ∗ is at least as hard as
solving the motion planning problem. Therefore, this idea does not seem practical.
However, it is generally useful to consider ρ∗ because the performance of RDT-
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based planners generally degrades as ρ, the actual metric used in the RDT, and
ρ∗ diverge. An effort to make a crude approximation to ρ∗, even if obstacles
are neglected, often leads to great improvements in performance. An excellent
example of this appears in [363], in which value iteration was used to compute the
optimal cost-to-go in the absence of obstacles for an autonomous helicopter using
the maneuver automaton model of Figure 14.8.

Ensuring resolution completeness Suppose that the discrete-time model is
used. If α is dense in X, then each RDT vertex is visited a countably infinite
number of times after it is constructed. By ensuring that the same motion primitive
is never applied twice from the same vertex, all available motion primitives will
eventually be tried. This ensures that the full reachability graph is explored for a
fixed ∆t. Since the reachability graph is not necessarily finite, obtaining resolution
completeness is more challenging. The scheme described in Figure 14.7 can be
applied by periodically varying ∆t during execution, and using smaller and smaller
of values of ∆t in later iterations. If U is finite, refinements can also be made to
Ud. This leads to a resolution-complete RDT.

Designing good motion primitives Up to this point, only the discrete-time
model has been considered. Although it is the most straightforward and general,
there are often many better motion primitives that can be used. For a particular
system, it may be possible to design a nice family of trajectories off-line in the ab-
sence of obstacles and then use them as motion primitives in the RDT construction.
If possible, it is important to carefully analyze the system under consideration to
try to exploit any special structure it may have or techniques that might have been
developed for it. For motion planning of a vehicle, symmetries can be exploited to
apply the primitives from different states. For example, in flying a helicopter, the
yaw angle and the particular position (unless it is close to the ground) may not
be important. A family of trajectories designed for one yaw angle and position
should work well for others.

Using more complicated motion primitives may increase the burden on the
LPM. In some cases, a simple control law (e.g., PID [50]) may perform well. Ideally,
the LPM should behave like a good steering method, which could be obtained using
methods in Chapter 15. It is important to note, though, that the RDT’s ability to
solve problems does not hinge on this. It will greatly improve performance if there
are excellent motion primitives and a good steering method in the LPM. The main
reason for this is that the difficulties of the differential constraints have essentially
been overcome once this happens (except for the adverse effects of drift). Although
having good motion primitives can often improve performance in practice, it can
also increase the difficulty of ensuring resolution completeness.
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14.4.4 Other Methods

Extensions of virtually any other method in Chapter 5 can be made to handle
differential constraints. Several possibilities are briefly mentioned in this section.

Randomized potential fields The randomized potential field method of Sec-
tion 5.4.3 can be easily adapted to handle differential constraints. Instead of
moving in any direction to reduce the potential value, motion primitives are ap-
plied and integrated to attempt to reduce the value. For example, under the
discrete-time model, each u ∈ Ud can be applied over ∆t, and the one for which
the next state has the lowest potential value should be selected as part of the
descent. Random walks can be tried whenever no such action exists, but once
again, motion in any direction is not possible. Random actions can be chosen
instead. The main problems with the method under differential constraints are
1) it is extremely challenging to design a good potential function, and 2) random
actions do not necessarily provide motions that are similar to those of a random
walk. Section 15.1.2 discusses Lyapunov functions, which serve as good potential
functions in the presence of differential constraints (but usually neglect obstacles).
In the place of random walks, other planning methods, such as an RDT, could be
used to try to escape local minima.

Other tree-based planners Many other tree-based planners can be extended
to handle differential constraints. For example, an extension of the expansive space
planner from Section 5.4.4 to kinodynamic planning for spacecrafts appears in
[466]. Recently, a new tree-based method, called the path-directed subdivision tree,
has been proposed for planning under differential constraints [572]. The method
works by choosing points at random in the swath, applying random actions, and
also using a space-partition data structure to control the exploration.

Sampling-based roadmap planners As stated already, it is generally difficult
to construct sampling-based roadmaps unless the BVP can be efficiently solved.
The steering methods of Section 15.5 can serve this purpose [934, 859]. In principle,
any of the single-query methods of Section 14.4 could be used; however, it may
be too costly to use them numerous times, which is required in the roadmap
construction algorithm.

14.5 Feedback Planning Under Differential Con-

straints

14.5.1 Problem Definition

Formulation 14.1 assumed that feedback is not necessary. If the initial state is
given, then the solution takes the form of an action trajectory, which upon inte-
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gration yields a time-parametrized path through Xfree. This extended the Piano
Mover’s Problem of Section 4.3.1 to include phase spaces and differential con-
straints. Now suppose that feedback is required. The reasons may be that the
initial state is not given or the plan execution might not be predictable due to
disturbances or errors in the system model. Recall the motivation from Section
8.1.

With little effort, the feedback motion planning framework from Chapter 8
can be extended to handle differential constraints. Compare Formulations 8.2
and 14.1. Feedback motion planning under differential constraints is obtained by
making the following adjustments to Formulation 8.2:

1. In Formulation 8.2, X = Cfree, which automatically removed Cobs from C by
definition. Now let X be any C-space or phase space, and let Xobs be defined
as in Formulation 8.2. This leads to Xfree, as defined in Formulation 14.1.

2. In Formulation 8.2, the state transition equation was ẋ = u, which directly
specified velocities in the tangent space Tx(X). Now let any system, ẋ =
f(x, u), be used instead. In this case, U(x) is no longer a subset of Tx(X).
It still includes the special termination action uT .

3. Formulation 14.1 includes xI , which is now removed for the feedback case to
be consistent with Formulation 8.2.

4. A feedback plan is now defined as a function π : Xfree → U . For a given
state x ∈ Xfree, an action π(x) is produced. Composing π with f yields a
velocity in Tx(X) given by ẋ = f(x, π(x)). Therefore, π defines a vector field
on Xfree.

Let tF denote the time at which uT is applied. Both feasible and optimal planning
can be defined using a cost functional,

L(x̃tF , ũtF ) =

∫ tF

0

l(x(t), u(t))dt+ lF (x(tF )), (14.26)

which is identical to that given in Section 8.4.1. This now specifies the problem
of feedback motion planning under differential constraints.

The most important difference with respect to Chapter 8 is that ẋ = u is re-
placed with ẋ = f(x, u), which allows complicated differential models of Chapter
13 to be used. The vector field that results from π must satisfy the differen-
tial constraints imposed by ẋ = f(x, u). In Section 8.4.4, simple constraints on
the allowable vector fields were imposed, such as velocity bounds or smoothness;
however, these constraints were not as severe as the models in Chapter 13. For
example, the Dubins car does not allow motions in the reverse direction, whereas
the constraints in Section 8.4.4 permit motions in any direction.



14.5. FEEDBACK PLANNING UNDER DIFFERENTIAL CONSTRAINTS839

14.5.2 Dynamic Programming with Interpolation

As observed in Section 14.4, motion planning under differential constraints is ex-
tremely challenging. Additionally requiring feedback complicates the problem even
further. If Xobs = ∅, then a feedback plan can be designed using numerous tech-
niques from control theory. See Section 15.2.2 and [192, 523, 846]. In many cases,
designing feedback plans is no more difficult than computing an open-loop trajec-
tory. However, if Xobs 6= ∅, feedback usually makes the problem much harder.

Fortunately, dynamic programming once again comes to the rescue. In Section
2.3, value iteration yielded feedback plans for discrete state spaces and state tran-
sition equations. It is remarkable that this idea can be generalized to the case in
which U and X are continuous and there is a continuum of stages (called time).
Most of the tools required to apply dynamic programming in the current setting
were already introduced in Section 8.5.2. The main ideas in that section were to
represent the optimal cost-to-go G∗ by interpolation and to use a discrete-time
approximation to the motion planning problem.

The discrete-time model of Section 14.2.2 can be used in the current setting
to obtain a discrete-stage state transition equation of the form xk+1 = fd(xk, uk).
The cost functional is approximated as in Section 8.5.2 by using (8.65). This
integral can be evaluated numerically by using the result of the system simulator
and yields the cost-per-stage as ld(xk, uk). Using backward value iteration, the
dynamic programming recurrence is

G∗
k(xk) = min

uk∈Ud

{

ld(xk, uk) +G∗
k+1(xk+1)

}

, (14.27)

which is similar to (2.11) and (8.56). The finite set Ud of action samples is used
if U is not already finite. The system simulator is applied to determine whether
some points along the trajectory lie in Xobs. In this case, ld(xk, uk) = ∞, which
prevents actions from being chosen that violate constraints.

As in Section 8.5.2, a set P ⊂ X of samples is used to approximate G∗ over
X. The required values at points in X \ P are obtained by interpolation. For
example, the barycentric subdivision scheme of Figure 8.20 may be applied here
to interpolate over simplexes in O(n lg n) time, in which n is the dimension of X.

As usual, backward value iteration starts at some final stage F and proceeds
backward through the stage indices. Termination occurs when all of the cost-to-go
values stabilize. The initialization at stage F yields G∗

F (x) = 0 for x ∈ XG ∩ P ;
otherwise, G∗

F (x) = ∞. Each subsequent iteration is performed by evaluating
(14.27) on each x ∈ P and using interpolation to obtain G∗

k+1(xk+1).
The resulting stationary cost-to-go function G∗ can serve as a navigation func-

tion over Xfree, as described in Section 8.5.2. Recall from Chapter 8 that a nav-
igation function is converted into a feedback plan by applying a local operator.
The local operator in the present setting is

π(x) = argmin
u∈Ud

{

ld(x, u) +G∗(fd(x, u))
}

, (14.28)
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which yields an action for any state in Xfree that falls into an interpolation neigh-
borhood of some samples in P .

Unfortunately, the method presented here is only useful in spaces of a few
dimensions. If X = C, then it may be applied, for example, to the systems
in Section 13.1.2. If dynamics are considered, then in many circumstances the
dimension is too high because the dimension of X is usually twice that of C. For
example, if A is a rigid body in the plane, then the dimension of X is six, which
is already at the usual limit of practical use.

It is interesting to compare the use of dynamic programming here with that of
Sections 14.4.1 and 14.4.2, in which a search graph was constructed. If Dijkstra’s
algorithm is used (or even breadth-first search in the case of time optimality), then
by the dynamic programming principle, the resulting solutions are approximately
optimal. To ensure convergence, resolution completeness arguments were given
based on Lipschitz conditions on f . It was important to allow the resolution to
improve as the search failed to find a solution. Instead of computing a search
graph, value iteration is based on computing cost-to-go functions. In the same
way that both forward and backward versions of the tree-based approaches were
possible, both forward and backward value iteration can be used here. Providing
resolution completeness is more difficult, however, because xI is not fixed. It is
therefore not known whether some resolution is good enough for the intended
application. If xI is known, then G∗ can be used to generate a trajectory from xI

using the system simulator. If the trajectory fails to reach XG, then the resolution
can be improved by adding more samples to P and Ud or by reducing ∆t. Under
Lipschitz conditions on f , the approach converges to the true optimal cost-to-go
[92, 168, 565]. Therefore, value iteration can be considered resolution complete
with respect to a given xI . The convergence even extends to computing optimal
feedback plans with additional actions that are taken by nature, which is modeled
nondeterministically or probabilistically. This extends the value iteration method
of Section 10.6.

The relationship between the methods based on a search graph and on value
iteration can be brought even closer by constructing Dijkstra-like versions of value
iteration, as described at the end of Section 8.5.2. These extend Dijkstra’s algo-
rithm, which was viewed for the finite case in Section 2.3.3 as an improvement to
value iteration. The improvement to value iteration is made by recognizing that in
most evaluations of (14.27), the cost-to-go value does not change. This is caused
by two factors: 1) From some states, no trajectory has yet been found that leads
to XG; therefore, the cost-to-go remains at infinity. 2) The optimal cost-to-go
from some state might already be computed; no future iterations would improve
the cost.

A forward or backward version of a Dijkstra-like algorithm can be made. Con-
sider the backward case. The notion of a backprojection was used in Section 8.5.2
to characterize the set of states that can reach another set of states in one stage.
This was used in (8.68) to define the frontier during the execution of the Dijkstra-
like algorithm. There is essentially no difference in the current setting to handle
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the system ẋ = f(x, u). Once the discrete-time approximation has been made,
the definition of the backprojection is essentially the same as in (8.66) of Section
8.5.2. Using the discrete-time model of Section 14.2.2, the backprojection of a
state x ∈ Xfree is

B(x) = {x′ ∈ Xfree | ∃u ∈ Ud such that x = fd(x
′, u)}. (14.29)

The backprojection is closely related to the backward time-limited reachable set
from Section 14.2.1. The backprojection can be considered as a discrete, one-stage
version, which indicates the states that can reach x through the application of a
constant action u ∈ Ud over time ∆t. As mentioned in Section 8.5.2, comput-
ing an overapproximation to the frontier set may be preferable in practice. This
can be obtained by approximating the backprojections, which are generally more
complicated under differential constraints than for the case considered in Section
8.5.2. One useful simplification is to ignore collisions with obstacles in defining
B(x). Also, a simple bounding volume of the true backprojection may be used.
The trade-offs are similar to those in collision detection, as mentioned in Section
5.3.2. Sometimes the structure of the particular system greatly helps in determin-
ing the backprojections. A nice wavefront propagation algorithm can be obtained,
for example, for a double integrator; this is exploited in Section 14.6.3. For more
on value iteration and Dijkstra-like versions, see [607].

14.6 Decoupled Planning Approaches

14.6.1 Different Ways to Decouple the Big Problem

As sampling-based algorithms continue to improve along with computation power,
it becomes increasingly feasible in practice to directly solve challenging planning
problems under differential constraints. There are many situations, however, in
which computing such solutions is still too costly due to expensive numerical inte-
gration, collision detection, and complicated obstacles in a high-dimensional state
space. Decoupled approaches become appealing because they divide the big prob-
lem into modules that are each easier to solve. For versions of the Piano Mover’s
Problem, such methods were already seen in Chapter 7. Section 7.1.3 introduced
the velocity-tuning method to handle time-varying obstacles, and Section 7.2.2
presented decoupled approaches to coordinating multiple robots.

Ideally, we would like to obtain feedback plans on any state space in the pres-
ence of obstacles and differential constraints. This assumes that the state can
be reliably measured during execution. Section 14.5 provided the best generic
techniques for solving the problem, but they are unfortunately limited to a few di-
mensions. If there is substantial sensing uncertainty, then the feedback plan must
be defined on the I-space, which was covered in Chapter 11. Back in Section 1.4,
Figure 1.19 showed a popular model of decoupling the big planning problem into
a sequence of refinements. A typical decoupled approach involves four modules:
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1. Use a motion planning algorithm to find a collision-free path τ : [0, 1] →
Cfree.

2. Transform τ into a new path τ ′ so that velocity constraints on C (if there are
any) are satisfied. This might, for example, ensure that the Dubins car can
actually follow the path. At the very least, some path-smoothing is needed
in most circumstances.

3. Compute a timing function σ : [0, tF ]→ [0, 1] for τ ′ so that τ ′ ◦ σ is a time-
parameterized path through Cfree with the following requirement. The state
trajectory x̃ must satisfy ẋ = f(x(t), u(t)) and u(t) ∈ U(x(t)) for all time,
until uT is applied at time tF .

4. Design a feedback plan (or feedback control law) π : X → U that tracks x̃.
The plan should attempt to minimize the error between the desired state
and the measured state during execution.

Given recent techniques and computation power, the significance of this approach
may diminish somewhat; however, it remains an important way to decompose and
solve problems. Be aware, however, that this decomposition is arbitrary. If every
module can be solved, then it is sufficient for producing a solution; however, such
a decomposition is not necessary. At any step along the way, completeness may
be lost because of poor choices in earlier modules. It is often difficult for modules
to take into account problems that may arise later.

Various ways to merge the modules have been considered. The methods of
Section 14.4 solve either: 1) the first two modules simultaneously, if paths that
satisfy q̇ = f(q, u) are computed through Cfree, or 2) the first three modules simul-
taneously, if paths that satisfy ẋ = f(x, u) are computed through Xfree. Section
14.5 solved all four modules simultaneously but was limited to low-dimensional
state spaces.

Now consider keeping the modules separate. Planning methods from Part II
can be applied to solve the first module. Section 14.6.2 will cover methods that
implement the second module. Section 14.6.3 will cover methods that solve the
third module, possibly while also solving the second module. The fourth module
is a well-studied control problem that is covered in numerous texts [523, 846, 856].

14.6.2 Plan and Transform

For the decoupled approach in this section, assume that X = C, which means
there are only velocity constraints, as covered in Section 13.1. The system may be
specified as q̇ = f(q, u) or implicitly as a set of constraints of the form gi(q, q̇) = 0.
The ideas in this section can easily be extended to phase spaces. The method
given here was developed primarily by Laumond (see [596]) and was also applied
to the simple car of Section 13.1.2 in [587]; other applications of the method are
covered in [596].
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PLAN-AND-TRANSFORM APPROACH

1. Compute a path τ : [0, 1] → Cfree using a motion planning algorithm, such
as one from Part II.

2. Choose some s1, s2 ∈ [0, 1] such that s1 < s2 and use an LPM to attempt to
replace the portion of τ from τ(s1) to τ(s2) with a path γ that satisfies the
differential constraints.

3. If τ now satisfies the differential constraints over all [0, 1], then the algorithm
terminates. Otherwise, go to Step 2.

Figure 14.21: A general outline of the plan-and-transform approach.

An outline of the plan-and-transform approach is shown in Figure 14.21. In
the first step, a collision-free path τ : [0, 1] → Cfree is computed by ignoring
differential constraints. The path is then iteratively modified until it satisfies
the constraints. In each iteration, a subinterval [s1, s2] ⊆ [0, 1] is selected by
specifying some s1, s2 ∈ [0, 1] so that s1 < s2. These points may be chosen
using random sequences or may be chosen deterministically. The approach may
use binary subdivision to refine intervals and gradually improve the resolution on
[0, 1] over the iterations.

For each chosen interval [s1, s2], an LPM is used to compute a path segment γ :
[0, 1]→ Cfree that satisfies the conditions γ(0) = τ(s1) and γ(1) = τ(s2). It might
be the case that the LPM fails because it cannot connect the two configurations or
a collision may occur. In this case, another subinterval is chosen, and the process
repeats. Each time the LPM succeeds, τ is updated to τ ′ as

τ ′(s) =







τ(s) if s < s1
γ((s− s1)/(s2 − s1)) if s ∈ [s1, s2]
τ(s) if s > s2.

(14.30)

The argument to γ reparameterizes it to run from s1 to s2, instead of 0 to 1.

Example 14.5 (Plan-and-Transform for the Dubins Car) For a concrete
example, suppose that the task is to plan a path for the Dubins car. Figure 14.22
shows a path τ that might be computed by a motion planning algorithm that
ignores differential constraints. Two sharp corners cannot be traversed by the car.
Suppose that s1 and s2 are chosen at random, and appear at the locations shown in
Figure 14.22. The portion of τ between τ(s1) and τ(s2) needs to be replaced by a
path that can be executed by the Dubins car. Note that matching the orientations
at τ(s1) and τ(s2) is important because they are part of the configuration.

A replacement path γ is shown in Figure 14.23. This is obtained by implement-
ing the following LPM. For the Dubins car, a path between any configurations can
be found by drawing circles at the starting and stopping configurations as shown
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qG

qI

τ(s1) τ(s2)

τ

Figure 14.22: An initial path that ignores differential constraints.

γ

τ(s1) τ(s2)

Figure 14.23: A path for the Dubins car can always be found by connecting a
bitangent to two circles generated by the minimum turning radius. The path is
not necessarily optimal; see Section 15.3.1 for optimal paths.

in the figure. Each circle corresponds to the sharpest possible left turn or right
turn. It is straightforward to find a line that is tangent to one circle from each
configuration and also matches the direction of flow for the car (the circles are
like one-way streets). Using γ, the path τ is updated to obtain τ ′, which is shown
in Figure 14.24, and satisfies the differential constraints for the Dubins car. This
problem was very simple, and in practice dozens of iterations may be necessary to
replace path segments. Also, if randomization is used, then intervals of the form
[0, s] and [s, 1] must not be neglected.

�

Example 14.5 seemed easy because of the existence of a simple local planner.
Also, there were no obstacles. Imagine that τ instead traveled through a narrow,
zig-zagging corridor. In this case, a solution might not even exist because of sharp
corners that cannot be turned by the Dubins car. If there had been an single
obstacle that happened to intersect the loop in Figure 14.24, then the replacement
would have failed. In general, there is no guarantee that the replacement segment
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qG

qI

τ(s1) τ(s2)

Figure 14.24: Upon replacement, the resulting path τ ′ can be followed by the
Dubins car.

is collision-free. It is important for the LPM to construct path segments that are
as close as possible to the original path. For the Dubins car, this is not possible
in many cases. For example, moving the Dubins car a small distance backward
requires moving along the circles shown in Figure 14.23. Even as the distance
between two configurations is reduced, the distance that the car needs to travel
does not approach zero. This is true even if the shortest possible paths are used
for the Dubins car.

What property should an LPM have to ensure resolution completeness of the
plan-and-transform approach? A sufficient condition is given in [596]. Let ρ denote
a metric on X. An LPM is said to satisfy the topological property if and only if
the following statement holds: For any ǫ > 0, there exists some δ > 0 such that
for any pair q, q′ ∈ Cfree having ρ(q, q′) < δ implies that ρ(τ(s), q) < ǫ for all
s ∈ [0, 1]. If an LPM satisfies the topological property, then any collision-free path
through Cfree can be transformed into one that satisfies the differential constraints.
Suppose that a path τ has some clearance of at least ǫ in Cfree. By dividing the
domain of τ into intervals so that the change in q is no more than δ over each
interval, then the LPM will produce collision-free path segments for replacement.

It turns out that for the Reeds-Shepp car (which has reverse) such an LPM
can be designed because it is small-time locally controllable, a property that will
be covered in Sections 15.1.3 and 15.4. In general, many techniques from Chapter
15 may be useful for analyzing and designing effective LPMs.

An interesting adaptation of the plan-and-transform approach has been de-
veloped for problems that involve k implicit constraints of the form gi(q, q̇) = 0.
An outline of the multi-level approach, which was introduced in [859], is shown
in Figure 14.25 (a similar approach was also introduced in [333]). The idea is to
sort the k constraints into a sequence and introduce them one at a time. Initially,
a path is planned that ignores the constraints. This path is first transformed to
satisfy g1(q, q̇) = 0 and avoid collisions by using the plan-and-transform method
of Figure 14.21. If successful, then the resulting path is transformed into one that
is collision-free and satisfies both g1(q, q̇) = 0 and g2(q, q̇) = 0. This process re-
peats by adding one constraint each time, until either the method fails or all k
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MULTI-LEVEL APPROACH

1. Compute a path τ : [0, 1] → Cfree using a standard motion planning algo-
rithm (as in Part II), and let i = 1.

2. Transform τ into a collision free path that satisfies gj(q, q̇) = 0 for all j from
1 to i.

3. If the transformation failed in Step 2, then terminate and report failure.

4. If i < k, the number of implicit velocity constraints, then increment i and
go to Step 2. Otherwise, terminate and successfully report τ as a path that
satisfies all constraints.

Figure 14.25: The multi-level approach considers implicit constraints one at a
time.

constraints have been taken into account.

14.6.3 Path-Constrained Trajectory Planning

This section assumes that a path τ : [0, 1] → Cfree has been given. It may be
computed by a motion planning algorithm from Part II or given by hand. The
remaining task is to determine the speed along the path in a way that satisfies
differential constraints on the phase space X. Assume that each state x ∈ X
represents both a configuration and its time derivative, to obtain x = (q, q̇). Let n
denote the dimension of C; hence, the dimension of X is 2n. Once a path is given,
there are only two remaining degrees of freedom in X: 1) the position s ∈ [0, 1]
along the domain of τ , and 2) the speed ṡ = ds/dt at each s. The full state, x,
can be recovered from these two parameters. As the state changes, it must satisfy
a given system, ẋ = f(x, u). It will be seen that a 2D planning problem arises,
which can be solved efficiently using many alternative techniques. Similar concepts
appeared for decoupled versions of time-varying motion planning in Section 7.1.
The presentation in the current section is inspired by work in time-scaling paths
for robot manipulators [456, 876, 879], which was developed a couple of decades
ago. At that time, computers were much slower, which motivated the development
of strongly decoupled approaches.

14.6.3.1 Expressing systems in terms of s, ṡ, and s̈

Suppose that a system is given in the form

q̈ = h(q, q̇, u), (14.31)

in which there are n action variables u = (u1, . . . , un). It may be helpful to glance
ahead to Example 14.6, which will illustrate the coming concepts for the simple
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case of double integrators q̈ = u. The acceleration in C is determined from the state
x = (q, q̇) and action u. Assume u ∈ U , in which U is an n-dimensional subset of
Rn. If h is nonsingular at x, then an n-dimensional set of possible accelerations
arises from choices of u ∈ U . This means it is fully actuated. If there were fewer
than n action variables, then there would generally not be enough freedom to
follow a specified path. Therefore, U must be n-dimensional. Which choices of
u, however, constrain the motion to follow the given path τ? To determine this,
the q, q̇, and q̈ variables need to be related to the path domain s and its first and
second time derivatives ṡ and s̈, respectively. This leads to a subset of U that
corresponds to actions that follow the path.

Suppose that s, ṡ, s̈, and a path τ are given. The configuration q ∈ Cfree is

q = τ(s). (14.32)

Assume that all first and second derivatives of τ exist. The velocity q̇ can be
determined by the chain rule as

q̇ =
dτ

ds

ds

dt
=

dτ

ds
ṡ, (14.33)

in which the derivative dτ/ds is evaluated at s. The acceleration is obtained by
taking another derivative, which yields

q̈ =
d

dt

(
dτ

ds
ṡ

)

=
d2τ

ds2
ds

dt
ṡ+

dτ

ds
s̈

=
d2τ

ds2
ṡ2 +

dτ

ds
s̈,

(14.34)

by application of the product rule. The full state x = (q, q̇) can be recovered from
(s, ṡ) using (14.32) and (14.33).

The next step is to obtain an equation that looks similar to (14.31), but is
expressed in terms of s, ṡ, and s̈. A function h′(s, ṡ, u) can be obtained from
h(q, q̇, u) by substituting τ(s) for q and the right side of (14.33) for q̇:

h′(s, ṡ, u) = h(τ(s),
dτ

ds
ṡ, u). (14.35)

This yields

q̈ = h′(s, ṡ, u). (14.36)

For a given state x (which can be obtained from s and ṡ), the set of accelerations
that can be obtained by a choice of u in (14.36) is the same as that for the original
system in (14.31). The only difference is that x is now constrained to a 2D subset
of X, which are the states that can be reached by selecting values for s and ṡ.
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Applying (14.34) to the left side of (14.36) constrains the accelerations to cause
motions that follow τ . This yields

d2τ

ds2
ṡ2 +

dτ

ds
s̈ = h′(s, ṡ, u), (14.37)

which can also be expressed as

dτ

ds
s̈ = h′(s, ṡ, u)− d2τ

ds2
ṡ2, (14.38)

by moving the first term of (14.34) to the right. Note that n equations are actually
represented in (14.38). For each i in which dτi/ds 6= 0, a constraint of the form

s̈ =
1

dτi/ds
h′
i(s, ṡ, ui)−

d2τi
ds2

ṡ2 (14.39)

is obtained by solving for s̈.

14.6.3.2 Determining the allowable accelerations

The actions in U that cause τ to be followed can now be characterized. An action
u ∈ U follows τ if and only if every equation of the form (14.39) is satisfied. If
dτi/ds 6= 0 for all i from 1 to n, then n such equations exist. Suppose that u1 is
chosen, and the first equation is solved for s̈. The required values of the remaining
action variables u2, . . ., un can be obtained by substituting the determined s̈ value
into the remaining n− 1 equations. This means that the actions that follow τ are
at most a one-dimensional subset of U .

If dτi/ds = 0 for some i, then following the path requires that q̇i = 0. Instead
of (14.39), the constraint is that hi(q, q̇, u) = 0. Example 14.6 will provide a simple
illustration of this. If dτi/ds = 0 for all i, then the configuration is not allowed to
change. This occurs in the degenerate (and useless) case in which τ is a constant
function.

In many cases, a value of u does not exist that satisfies all of the constraint
equations. This means that the path cannot be followed at that particular state.
Such states should be removed, if possible, by defining phase constraints on X.
By a poor choice of path τ violating such a phase constraint may be unavoidable.
There may exist some s for which no u ∈ U can follow τ , regardless of ṡ.

Even if a state trajectory may be optimal in some sense, its quality ultimately
depends on the given path τ : [0, 1] → Cfree. Consider the path shown in Figure
14.26. At τ(1/3), a “corner” is reached. This violates the differentiability assump-
tion and would require infinite acceleration to traverse while remaining on τ . For
some models, it may be possible to stop at τ(1/3) and then start again. For exam-
ple, imagine a floating particle in the plane. It can be decelerated to rest exactly
at τ(1/3) and then started in a new direction to exactly follow the curve. This
assumes that the particle is fully actuated. If there are nonholonomic constraints
on C, as in the case of the Dubins car, then the given path must at least satisfy
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Cfree

τ(1)

τ(0) τ(2/3)

τ(1/3)

Figure 14.26: A bad path for path-constrained trajectory planning.

them before accelerations can be considered. The solution in this case depends on
the existence of decoupling vector fields [157, 224].

It is generally preferable to round off any corners that might have been pro-
duced by a motion planning algorithm in constructing τ . This helps, but it still
does not completely resolve the issue. The portion of the path around τ(2/3) is
not desirable because of high curvature. At a fixed speed, larger accelerations are
generally needed to follow sharp turns. The speed may have to be decreased simply
because τ carelessly requires sharp turns in C. Imagine developing an autonomous
double-decker tour bus. It is clear that following the curve around τ(2/3) may
cause the bus to topple at high speeds. The bus will have to slow down because
it is a slave to the particular choice of τ .

14.6.3.3 The path-constrained phase space

Recall the approach in Section 14.4.1 that enabled systems of the form q̈ =
h(q, q̇, u) to be expressed as q̈ = u′ for some suitable U ′(q, q̇) ⊆ U (this was illus-
trated in Figure 14.15). This enabled many systems to be imagined as multiple,
independent double integrators with phase-dependent constraints on the action
space. The same idea can be applied here to obtain a single integrator.

Let S denote a 2D path-constrained phase space, in which each element is of the
form (s, ṡ) and represents the position and velocity along τ . This parameterizes a
2D subset of the original phase space X. Each original state vector is x = (q, q̇) =
(τ(s), dτ/ds ṡ). Which accelerations are possible at points in S? At each (s, ṡ),
a subset of U can be determined that satisfies the equations of the form (14.39).
Each valid action yields an acceleration s̈. Let U ′(s, ṡ) ⊆ R denote the set of all
values of s̈ that can be obtained from an action u ∈ U that satisfies (14.39) for
each i (except the ones for which dτi/ds = 0). Now the system can be expressed as
s̈ = u′, in which u′ ∈ U ′(s, ṡ). After all of this work, we have arrived at the double
integrator. The main complication is that U ′(s, ṡ) can be challenging to determine
for some systems. It could consist of a single interval, disjoint intervals, or may
even be empty. Assuming that U ′(s, ṡ) has been characterized, it is straightforward
to solve the remaining planning problem using techniques already presented in this
chapter. One double integrator is not very challenging; hence, efficient sampling-
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based algorithms exist.
An obstacle region Sobs ⊂ S will now be considered. This includes any states

that belong to Xfree. Given s and ṡ, the state x can be computed to determine
whether any constraints on X are violated. Usually, τ is constructed to avoid
obstacle collision; however, some phase constraints may also exist. The obstacle
region Sobs also includes any points (s, ṡ) for which U ′(s, ṡ) is empty. Let Sfree

denote S \ Sobs.
Before considering computation methods, we give some examples.

Example 14.6 (Path-Constrained Double Integrators) Consider the case
of two double integrators. This could correspond physically to a particle moving
in R2. Hence, C = W = R2. Let U = [−1, 1]2 and q̈ = u for u ∈ U . The
path τ will be chosen to force the particle to move along a line. For linear paths,
dτ/ds is constant and d2τ/ds2 = 0. Using these observations and the fact that
h′(s, ṡ, u) = u, (14.39) simplifies to

s̈ =
ui

dτi/ds
, (14.40)

for i = 1, 2.
Suppose that τ(s) = (s, s), which means that the particle must move along a

diagonal line through the origin of C. This further simplifies (14.40) to s̈ = u1 and
s̈ = u2. Hence any u1 ∈ [−1, 1] may be chosen, but u2 must then be chosen as
u2 = u1. The constrained system can be written as one double integrator s̈ = u′,
in which u′ ∈ [−1, 1]. Both u1 and u2 are derived from u′ as u1 = u2 = u′. Note
that U ′ does not vary over S; this occurs because a linear path is degenerate.

Now consider constraining the motion to a general line:

τ(s) = (a1s+ b1, a2s+ b2), (14.41)

in which a1 and a2 are nonzero. In this case, (14.40) yields s̈ = u1/a1 and s̈ =
u2/a2. Since each ui ∈ [−1, 1], each equation indicates that s̈ ∈ [−1/ai, 1/ai]. The
acceleration must lie in the intersection of these two intervals. If |a1| ≥ |a2|, then
s̈ ∈ [−1/a1, 1/a1]. We can designate u′ = u1 and let u2 = u′a2/a1. If |a1| > |a2|,
then s̈ ∈ [−1/a2, 1/a2], u′ = u2, and u1 = u′a1/a2.

Suppose that a1 = 0 and a2 6= 0. The path is

τ(s) = (q1, a2s+ b2), (14.42)

in which q1 is fixed and the particle is constrained to move along a vertical line
in C = R2. In this case, only one constraint, s̈ = u2, is obtained from (14.40).
However, u1 is independently constrained to u1 = 0 because horizontal motions
are prohibited.

If n independent, double integrators are constrained to a line, a similar result is
obtained. There are n equations of the form (14.40). The i ∈ {1, . . . , n} for which
|ai| is largest determines the acceleration range as s̈ ∈ [−1/ai, 1/ai]. The action u′
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is defined as u′ = ui, and the uj for j 6= i are obtained from the remaining n − 1
equations.

Now assume τ is nonlinear, in which case (14.39) becomes

s̈ =
ui

dτi/ds
− d2τi

ds2
ṡ2, (14.43)

for each i for which dτi/ds 6= 0. Now the set U ′(s, ṡ) varies over S. As the speed
ṡ increases, it becomes less likely that U ′(s, ṡ) is nonempty. In other words, it is
less likely that a solution exists to all equations of the form (14.43). In a physical
system, that means that staying on the path requires turning too sharply. At a
high speed, this may require an acceleration q̈ that lies outside of [−1, 1]n. �

The same ideas can be applied to systems that are much more complicated.
This should not be surprising because in Section 14.4.1 systems of the form q̈ =
h(q, q̇) were interpreted as multiple, independent double integrators of the form
q̈ = u′, in which u′ ∈ U ′(q, q̇) provided the possible accelerations. Under this
interpretation, and in light of Example 14.6, constraining the motions of a general
system to a path τ just further restricts U ′(q, q̇). The resulting set of allowable
accelerations may be at most one-dimensional.

The following example indicates the specialization of (14.39) for a robot arm.

Example 14.7 (Path-Constrained Manipulators) Suppose that the system
is described as (13.142) from Section 13.4.2. This is a common form that has been
used for controlling robot arms for decades. Constraints of the form (14.39) can
be derived by expressing q, q̇, and q̈ in terms of s, ṡ, and s̈. This requires using
(14.32), (14.33), and (14.34). Direct substitution into (13.142) yields

M(τ(s))

(
d2τ

ds2
ṡ2 +

dτ

ds
s̈

)

+ C
(

τ(s),
dτ

ds
ṡ
)dτ

ds
ṡ+ g(τ(s)) = u. (14.44)

This can be simplified to n equations of the form

αi(s)s̈+ βi(s)ṡ
2 + γi(s)ṡ = ui. (14.45)

Solving each one for s̈ yields a special case of (14.39). As in Example 14.6, each
equation determines a bounding interval for s̈. The intersection of the intervals
for all n equations yields the allowed interval for s̈. The action u′ once again
indicates the acceleration in the interval, and the original action variables ui can
be obtained from (14.45). If dτi/ds = 0, then αi(s) = 0, which corresponds to the
case in which the constraint does not apply. Instead, the constraint is that the
vector u must be chosen so that q̇i = 0. �
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ṡ

s

ṡmax

Sobs

Sobs

0 1
0

ṡ

s0 1

(a) (b)

Figure 14.27: (a) Planning occurs in the path-constrained phase space. (b) Due
to the forward-progress assumption, value iteration can be reduced to a quick
wavefront propagation across regularly spaced vertical lines in S.

14.6.3.4 Computing optimal solutions via dynamic programming

Dynamic programming with interpolation, as covered in Section 14.5, can be ap-
plied to solve the problem once it is formulated in terms of the path-constrained
phase space S ⊂ R2. The domain of τ provides the constraint 0 ≤ s ≤ 1. Assume
that only forward progress along the path is needed; moving in the reverse direc-
tion should not be necessary. This implies that ṡ > 0. To make S bounded, an
upper bound, ṡmax, is usually assumed, beyond which it is known that the speed
is too high to follow the path.

This results in the planning problem shown in Figure 14.27a. The system is
expressed as s̈ = u′, in which u′ ∈ U ′(s, ṡ). The initial phase in S is (0, ṡi) and
the goal phase is (1, ṡg). Typically, ṡi = ṡg = 0. The region shown in Figure 14.27
is contained in the first quadrant of the phase space because only positive values
of s and ṡ are allowed (in Figure 14.13, q and q̇ could be positive or negative).
This implies that all motions are to the right. The actions determine whether
accelerations or decelerations will occur.

Backward value iteration with interpolation can be easily applied by discretiz-
ing S and U ′(s, ṡ). Due to the constraint ṡ > 0, making a Dijkstra-like version of
the algorithm is straightforward. A simple wavefront propagation can even be per-
formed, starting at s = 1 and progressing backward in vertical waves until s = 0 is
reached. See Figure 14.27b. The backprojection (14.29) can be greatly simplified.
Suppose that the s-axis is discretized into m + 1 regularly spaced values s0, . . .,
sm at every ∆s, for some fixed ∆s > 0. Thus, sk = (k∆s)/m. The index k can
be interpreted as the stage. Starting at k = m, the final cost-to-go G∗

m(sm, ṡm)
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is defined as 0 if the corresponding phase represents the goal, and ∞ otherwise.
At each sk, the ṡ values are sampled, and the cost-to-go function is represented
using one-dimensional linear interpolation along the vertical axis. At each stage,
the dynamic programming computation

G∗
k(sk, ṡk) = min

u′∈U ′(sk,ṡk)

{

l′d(sk, ṡk, u
′) +G∗

k+1(sk+1, ṡk+1)
}

(14.46)

is performed at each ṡ sample. This represents a special form of (14.27). Linear
interpolation over discretized ṡ values is used to evaluate G∗

k+1(sk+1, ṡk+1). The
cost term l′d is obtained from ld by computing the original state x ∈ X from s
and ṡ; however, if the trajectory segment enters Sobs, it receives infinite cost. The
computations proceed until stage k = 1, at which time the optimal cost-to-go
G∗

1(s1, ṡ1) is computed. The optimal trajectory is obtained by using the cost-to-go
function at each stage as a navigation function.

The dynamic programming approach is so general that it can even be extended
to path-constrained trajectory planning in the presence of higher order constraints
[880]. For example, if a system is specified as q(3) = h(q, q̇, q̈, u), then a 3D path-
constrained phase space results, in which each element is expressed as (s, ṡ, s̈).
The actions in this space are jerks, yielding s(3) = u′ for u′ ∈ U ′(s, ṡ, s̈).

14.6.3.5 A bang-bang approach for time optimality

The dynamic programming approach is already very efficient because the search
is confined to two dimensions. Nevertheless, trajectories that are time optimal
can be computed even more efficiently if Sobs has some special structure. The
idea is to find an alternating sequence between two motion primitives: one of
maximum acceleration and one of maximum deceleration. This kind of switching
between extreme opposites is often called bang-bang control and arises often in
the development of time-optimal control laws (look ahead to Example 15.4). The
method explained here was introduced in [121, 879]. One drawback of obtaining
time-optimal trajectories is that they cannot be tracked (the fourth module from
Section 14.6.1) if errors occur because the solutions travel on the boundary of the
reachable set.

The approach was developed for robot arms, as considered in Example 14.7.
Suppose that Sobs is a single connected component that is bounded above by ṡmax,
and on the sides it is bounded by s = 0 and s = 1. It is assumed that S arises
only due to the vanishing of the interval of allowable values for s̈ (in this case,
U ′(s, ṡ) becomes empty). It is also assumed that the lower boundary of Sobs can
be expressed as a differentiable function φ : [0, 1]→ S, called the limit curve, which
yields the maximum speed ṡ = φ(s) for every s ∈ [0, 1]. The method is extended
to handle multiple obstacles in [879], but this case is not considered here. Assume
also that dτi/ds 6= 0 for every i; the case of dτi/ds = 0 can also be handled in the
method [878].

Let u′
min(s, ṡ) and u′

max(s, ṡ) denote the smallest and largest possible acceler-
ations, respectively, from (s, ṡ) ∈ S. If (s, ṡ) 6∈ Sobs, then u′

min(s, ṡ) < u′
max(s, ṡ).
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BANG-BANG APPROACH

1. From the final state (1, 0), apply reverse-time integration to s̈ = u′
min(s, ṡ).

Continue constructing the curve numerically until either the interior of Sobs

is entered or ṡ = 0. In the latter case, the algorithm terminates with failure.

2. Let (scur, ṡcur) = (0, 0).

3. Apply forward integration s̈ = u′
max(s, ṡ) from (scur, ṡcur) until either the

interior of Sobs is entered or the curve generated in Step 1 is crossed. In the
latter case, the problem is solved.

4. Starting at the point where the trajectory from Step 3 crossed the limit curve,
find next tangent point (stan, ṡtan) to the right along the limit curve. From
(stan, ṡtan), perform reverse integration on s̈ = u′

min(s, ṡ) until the curve from
Step 3 is hit. Let (scur, ṡcur) = (stan, ṡtan) and go to Step 3.

Figure 14.28: The bang-bang approach finds a time-optimal, path-constrained
trajectory with less searching than the dynamic programming approach.

At the limit curve, u′
min(s, φ(s)) = u′

max(s, φ(s)). Applying the only feasible action
in this case generates a velocity that is tangent to the limit curve. This is called
a tangent point, (stan, ṡtan), to φ. Inside of Sobs, no accelerations are possible.

The bang-bang approach is described in Figure 14.28, and a graphical illus-
tration appears in Figure 14.29. Assume that the initial and goal phases are
(0, 0) and (1, 0), respectively. Step 1 essentially enlarges the goal by constructing
a maximum-deceleration curve that terminates at (1, 0). A trajectory that con-
tacts this curve can optimally reach (1, 0) by switching to maximum deceleration.
Steps 3 and 4 construct a maximum-acceleration curve followed by a maximum-
deceleration curve. The acceleration curve runs until it pierces the limit curve.
This constraint violation must be avoided. Therefore, a deceleration must be de-

s

ṡ

0 1

Sobs

Figure 14.29: An illustration of the bang-bang approach to computing a time-
optimal trajectory. The solution trajectory is obtained by connecting the dots.



14.7. GRADIENT-BASED TRAJECTORY OPTIMIZATION 855

termined that departs earlier from the acceleration curve and just barely misses
entering the interior of Sobs. This curve must become tangent to the limit curve;
therefore, a search is made along the limit curve for the next possible tangent
point. From there, reverse-time integration is used in Step 4 to generate a de-
celeration curve that contacts the acceleration curve. A portion of the solution
has now been obtained in which an acceleration is followed by a deceleration that
arrives at a tangent point of φ. It is possible that Step 4 is not reached because
the curve that connects to the goal is contacted. Starting from the tangent point,
Steps 3 and 4 are repeated until the goal curve is contacted.

14.7 Gradient-Based Trajectory Optimization

This section provides a brief overview of a complementary problem to motion
planning. Suppose that an algorithm in this chapter returns a feasible action
trajectory. How can the solution be improved? Trajectory optimization refers to
the problem of perturbing the trajectory while satisfying all constraints so that its
quality can be improved. For example, it may be desirable to shorten a trajectory
computed by an RRT, to remove some of the arbitrary changes in actions due to
randomization. Trajectory optimization is considered complementary to motion
planning because it usually requires an initial guess, which could be provided by a
planning algorithm. Trajectory optimization can be considered as a kind of BVP,
but one that improves an initial guess, as opposed to determining trajectories from
scratch.

The optimization issue also exists for paths computed by sampling-based algo-
rithms for the Piano Mover’s Problem; however, without differential constraints,
it is much simpler to shorten paths. The plan and transform method of Section
14.6.2 can be applied, and the LPM just connects pairs of configurations along the
shortest path in C. In the presence of differential constraints, the BVP must be
faced.

In the most general setting, it is very difficult to improve trajectories. There are
numerous methods from optimization literature; see [98, 151, 664] for overviews.
The purpose of this section is to encourage further study by briefly mentioning
the various kinds of methods that have been developed, instead of explaining them
in detail. The methods fall under the area of nonlinear programming (NLP) (or
nonlinear optimization), as opposed to linear programming, which was used to find
randomized security strategies in Section 9.3. The optimization actually occurs
in a space of possible trajectories, each of which is a function of time. Therefore,
the calculus of variations, which was used in Section 13.4.1, becomes relevant
to characterize extrema. The functional Φ from that setting becomes the cost
functional L in the current setting. The system ẋ = f(x, u) forms an additional
set of constraints that must be satisfied, but u can be selected in the optimization.

To enable numerical computation methods, a family of trajectories is specified
in terms of a parameter space. The optimization can then be viewed as an incre-
mental search in the parameter space while satisfying all constraints. The direction
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of motion in each step is determined by computing the gradient of a cost functional
with respect to the parameters while constrained to move in a direction tangent to
the constraints. Hence, much of nonlinear programming can be considered as an
application of Newton’s method or gradient descent. As in standard optimization,
second-order derivatives of the cost functional can be used to indicate when the
search should terminate. The numerical issues associated with these methods are
quite involved; several NLP software packages, such as the NAG Fortran Library
or packages within Matlab, are available.

Nonlinear optimal control theory can be considered as a variant of NLP. The dy-
namic programming recurrence becomes a differential equation in the continuous-
time setting, and Hamilton’s equations (13.198) generalize to Pontryagin’s mini-
mum principle. These are covered in Section 15.2. The extra variables that arise in
the minimum principle can be considered as Lagrange multipliers of a constrained
optimization, in which ẋ = f(x, u) is the constraint. The differential equations
arising from dynamic programming or the minimum principle are difficult to solve
analytically; therefore, in most cases, numerical techniques are used. The case of
numerical dynamic programming was covered in Section 14.5.

Shooting methods constitute the simplest family of trajectory optimization
methods. As a simple example, suppose that an action trajectory ũ : [0, tF ] → R

has been computed of the form

u(t) = w1 + w2t, (14.47)

in which w1 and w2 are some fixed parameters. Consider perturbing w1 and w2 by
some small amount and applying the integration in (14.1). If f satisfies Lipschitz
conditions, then a small perturbation should produce a small change in x̃. The
resulting new trajectory can be evaluated by a cost functional to determine whether
it is an improvement. It might, for example, have lower maximum curvature.
Rather than picking a perturbation at random, the gradient of the cost functional
with respect to the parameters can be computed. A small step in the parameter
space along the negative gradient direction should reduce the cost. It is very likely,
however, that perturbing w1 and w2 will move the final state x(tF ). Usually, a
termination condition, such as x(tF ) = xG, must be enforced as a constraint in the
optimization. This removes degrees of freedom from the optimization; therefore,
more trajectory parameters are often needed.

Suppose more generally that a motion planning algorithm computes an action
sequence based on the discrete-time model. Each action in the sequence remains
constant for duration ∆t. The time duration of each action can instead be defined
as a parameter to be perturbed. Each action variable ui over each interval could
also be perturbed using by (14.47) with the initial condition that w1 = ui and
w2 = 0. The dimension of the search has increased, but there are more degrees of
freedom. In some formulations, the parameters may appear as implicit constraints;
in this case, a BVP must be solved in each iteration. The minimum principle
is often applied in this case [98]. More details on formulating and solving the
trajectory optimization problem via shooting appear in [151].
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Several difficulties are encountered when applying the shooting technique to
trajectory optimization among obstacles. Each perturbation requires integration
and collision-checking. For problems involving vehicles, the integrations can some-
times be avoided by exploiting symmetries [197]. For example, a path for the
Dubins car can be perturbed by changing a steering angle over a short amount
of time, and the rest of the trajectory can simply be transformed using a matrix
of SE(2). A critical problem is that following the negative gradient may suggest
shortening the path in a way that causes collision. The problem can be alleviated
by breaking the trajectory into segments, as in the plan-and-transform approach;
however, this yields more optimizations. Another possible solution is to invent a
penalty function for the obstacles; however, this is difficult due to local minima
problems and the lack of representing the precise boundary of Xobs.

Another difficulty with shooting is that a small change in the action near the
starting time may lead to great changes in the states at later times. One way
to alleviate this problem is by multiple shooting (as opposed to single shooting,
which has been described so far). In this case, the trajectory is initially bro-
ken into segments. These could correspond to the time boundaries imposed by
a sequence of motion primitives. In this case, imagine perturbing each motion
primitive separately. Extra constraints are needed in this case to indicate that all
of the trajectory pieces must remain connected. The multiple shooting method
can be generalized to a family of methods called transcription or collocation (see
[98] for references). These methods again split the trajectory into segments, but
each connection constraint relates more points along the trajectory than just the
segment endpoints. One version of transcription uses implicit constraints, which
require using another BVP solver, and another version uses parametric constraints,
which dramatically increases the dimension of the search. The latter case is still
useful in practice by employing fast, sparse-matrix computation methods.

One of the main difficulties with trajectory optimization methods is that they
can become stuck in a local minimum in the space of trajectories. This means that
their behavior depends strongly on the initial guess. It is generally impossible for
them to find a trajectory that is not homotopic to the initial trajectory. They
cannot recover from an initial guess in a bad homotopy class. If Xobs is compli-
cated, then this issue becomes increasingly important. In many cases, variational
techniques might not even find an optimal solution within a single homotopy class.
Multiple local minima may exist if the closure of Xfree contains positive curvature.
If it does not, the space is called nonpositively curved (NPC) or CAT(0), which
is a property that can be derived directly from the metric on X [139]. For these
spaces, the locally optimal trajectory with respect to the metric is always the best
within its homotopy class.

Further Reading

The characterization and computation of reachable sets has been growing in interest
[100, 102, 706, 707, 916, 955]. One motivation for studying reachability is verification,
which ensures that a control system behaves as desired under all possible disturbances.
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This can actually be modeled as a game against nature, in which nature attempts to bring
the system into an undesirable state (e.g., crashing an airplane). For recent progress
on characterizing Xric, see [355]. The triangularization argument for completeness ap-
pears in a similar context in [292]. The precise rate of convergence, expressed in terms
of dispersion and Lipschitz conditions, for resolution-complete sampling-based motion
planning methods under differential constraints is covered in [196]. For the computa-
tional complexity of control problems, see [114, 766]. For further reading on motion
primitives in the context of planning, see [360, 362, 363, 393, 787, 794, 848]. For further
reading on dynamical simulation and numerical integration, see [331, 440, 863].

Section 14.4.1 was based on [288, 290, 441]. For more works on kinodynamic plan-
ning, see [203, 237, 289, 356, 360, 611, 780, 999]. Section 14.4.2 was inspired by [73].
Section 14.4.3 was drawn from [611]. For more work on RRTs under differential con-
straints, see [138, 199, 224, 324, 360, 393, 509, 949]. For other works on nonholonomic
planning, see the survey [596] and [67, 277, 334, 335, 354, 357, 482, 579, 633, 672].
Combinatorial approaches to nonholonomic planning have appeared in [13, 128, 347].

Section 14.5 was developed by adapting value iteration to motion planning problems.
For general convergence theorems for value iteration with interpolation, see [168, 292,
400, 565, 567]. In [168], global constraints on the phase space are actually considered.
The use of these techniques and the development of Dijkstra-like variants are covered in
[607]. Related work exists in artificial intelligence [722] and control theory [946].

Decoupled approaches to planning, as covered in Section 14.6, are very common in
robotics literature. For material related to the plan-and-transform method, see [333,
596, 859]. For more on decoupled trajectory planning and time scaling, see [353, 456,
457, 843, 876, 877, 880, 881], and see [104, 120, 121, 785, 879, 894, 878] for particular
emphasis on time-optimal trajectories.

For more on gradient-based techniques in general, see [98] and references therein.
Classical texts on the subject are [151, 664]. Gradient-based approaches to path defor-
mation in the context of nonholonomic planning appear in [197, 343, 575].

The techniques presented in this chapter are useful in other fields beyond robotics.
For aerospace applications of motion planning, see [86, 202, 436, 437, 786]. Motion
planning problems and techniques have been gaining interest in computer graphics,
particularly for generating animations of virtual humans (or digital actors); works in
this area include [35, 86, 393, 498, 544, 554, 557, 591, 617, 649, 712, 802, 980]. In many
of these works, motion capture is a popular way to generate a database of recorded
motions that serves as a set of motion primitives in the planning approach.

Exercises

1. Characterize Xric for the case of a point mass in W = R2, with each coordinate
modeled as a double integrator. Assume that u1 = 1 and u2 may take any value
in [−1, 1]. Determine Xric for:

(a) A point obstacle at (0, 0) in W.

(b) A segment from (0,−1) to (0, 1) in W.

Characterize the solutions in terms of the phase variables q1(0), q2(0), q̇1(0), and
q̇2(0).
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2. Extending the double integrator:

(a) Develop a lattice for the triple integrator q(3) = u that extends naturally
from the double-integrator lattice.

(b) Describe how to develop a lattice for higher order integrators q(n) for n > 3.

3. Make a figure similar to Figure 14.6b, but for three stages of the Reeds-Shepp car.

4. Determine expressions for the upper and lower boundaries of the time-limited
reachable sets shown in Figure 14.14. Express them as parabolas, with q̇ as a
function of q.

5. A reachability graph can be made by “rolling” a polyhedron in the plane. For
example, suppose a solid, regular tetrahedron is placed on a planar surface. As-
suming high friction, the tetrahedron can be flipped in one of four directions by
pushing on the top. Construct the three-stage reachability graph for this problem.

6. Construct a four-stage reachability graph similar to the one shown in Figure 14.6b,
but for the case of a differential drive robot modeled by (13.17). Use the three
actions (1, 0), (0, 1), and (1, 1). Draw the graph in the plane and indicate the
configuration coordinates of each vertex.

7. Section 14.2.2 explained how resolution-complete algorithms exist for planning
under differential constraints. Suppose that in addition to continuous state vari-
ables, there are discrete modes, as introduced in Section 7.3, to form a hybrid
system. Explain how resolution-complete planning algorithms can be developed
for this case. Extend the argument shown in Figure 14.7.

Implementations

8. Compare the performance and accuracy of Euler integration to fourth-order Runge-
Kutta on trajectories generated for a single, double, and triple integrator. For
accuracy, compare the results to solutions obtained analytically. Provide recom-
mendations of which one to use under various conditions.

9. Improve Figure 14.13 by making a plot of the actual trajectories, which are
parabolic in most cases.

10. In Figure 14.13, the state trajectory segments are longer as |ẋ| increases. Develop
a lattice that tries to keep all segments as close to the same length as possible by
reducing ∆t as |ẋ| increases. Implement and experiment with different schemes
and report on the results.

11. Develop an implementation for computing approximately time-optimal state tra-
jectories for a point mass in a 2D polygonal world. The robot dynamics can
be modeled as two independent double integrators. Search the double-integrator
lattice in X = R4 to solve the problem. Animate the computed solutions.
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12. Experiment with RDT methods applied to a spacecraft that is modeled as a 3D
rigid body with thrusters. Develop software that computes collision-free trajecto-
ries for the robot. Carefully study the issues associated with choosing the metric
on X.

13. Solve the problem of optimally bringing the Dubins car to a goal region in a
polygonal world by using value iteration with interpolation.

14. Select and implement a planning algorithm that computes pushing trajectories
for a differential drive robot that pushes a box in a polygonal environment. This
was given as an example of a nonholonomic system in Section 13.1.3. To use the
appropriate constraints on U , see [671].

15. Select and implement a planning algorithm that computes trajectories for parking
a car while pulling a single trailer, using (13.19). Make an obstacle region in W
that corresponds to a tight parking space and vary the amount of clearance. Also,
experiment with driving the vehicle through an obstacle course.

16. Generate a 3D rendering of reachability graphs for the airplane model in (13.20).
Assume that in each stage there are nine possible actions, based on combinations
of flying to the right, left, or straight and decreasing, increasing, or maintaining
altitude.

17. Implement the dynamic programming algorithm shown in Figure 14.27 for the
two-link manipulator model given in Example 13.13.

18. Implement the bang-bang algorithm shown in Figure 14.28 for the two-link ma-
nipulator model given in Example 13.13.

19. For the Dubins car (or another system), experiment with generating a search
graph based on Figure 14.7 by alternating between various step sizes. Plot in the
plane, the vertices and state trajectories associated with the edges of the graph.
Experiment with different schemes for generating a resolution-complete search
graph in a rectangular region and compare the results.

20. Use value iteration with interpolation to compute the optimal cost-to-go for the
Reeds-Shepp car. Plot level sets of the cost-to-go, which indicate the time-limited
reachable sets. Compare the result to Figure 14.4.


